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Abstract

The objective of the research described in this report is 
the development and application of a methodology for 
comprehensively assessing the hydrogeologic 
uncertainties involved in dose assessment, including 
uncertainties associated with conceptual models, 
parameters, and scenarios. This report describes and 
applies a statistical method, Maximum Likelihood 
Bayesian Model Averaging (MLBMA), to 
quantitatively estimate the combined uncertainty in 
model predictions arising from conceptual model and 
parameter uncertainties. The method relies on model 
averaging to combine the predictions of a set of 
alternative models. Implementation is driven by the 
available data. When there is minimal site-specific data 
the method can be carried out with prior parameter 
estimates based on generic data and subjective prior 
model probabilities. For sites with observations of 
system behavior (and optionally data characterizing 
model parameters), the method uses model calibration 
to update the prior parameter estimates and model 
probabilities based on the correspondence between 
model predictions and site observations. The set of 
model alternatives can contain both simplified and 
complex models, with the requirement that all models 
be based on the same set of data.  

MLBMA was applied to the geostatistical modeling of 
air permeability at a fractured rock site. Seven 
alternative variogram models of log air permeability 
were considered to represent data from single-hole 
pneumatic injection tests in six boreholes at the site. 
Unbiased maximum likelihood estimates of variogram 
and drift parameters were obtained for each model. 
Standard information criteria provided an ambiguous 
ranking of the models, which would not justify 
selecting one of them and discarding all others as is 
commonly done in practice. Instead, some of the 
models were eliminated based on their negligibly small 
updated probabilities and the rest were used to project 
the measured log permeabilities by kriging onto a rock 
volume containing the six boreholes. These four 
projections, and associated kriging variances, were 
averaged using the posterior model probabilities as 
weights. Finally, cross-validation was conducted by 
eliminating from consideration all data from one 
borehole at a time, repeating the above process, and 
comparing the predictive capability of the model-
averaged result with that of each individual model. 
Using two quantitative measures of comparison, the 
model-averaged result was superior to any individual 
geostatistical model of log permeability considered.  

 

 



 
v

Contents 

Abstract ........................................................................................................................................................................iii 
Executive Summary......................................................................................................................................................ix 
Foreword.....................................................................................................................................................................xiii 
Acknowledgments .......................................................................................................................................................xv 
 
1 Introduction ...........................................................................................................................................................1 
 
2 Quantification of Parameter and Conceptual Model Uncertainty..........................................................................5 
 

2.1 Parameter Uncertainty ................................................................................................................................5 
 

2.1.1 Sources of Parameter Uncertainty .........................................................................................................5 
2.1.2 Analysis of Parameter Uncertainty ........................................................................................................6 

 
2.2 Conceptual Model Uncertainty...................................................................................................................9 

 
2.2.1 Analysis of Conceptual Model Uncertainty...........................................................................................9 

 
3 Combining Parameter and Conceptual Model Uncertainty .................................................................................11 
 

3.1 Bayesian Model Averaging ......................................................................................................................11 
 

3.1.1 Interpretation of Model Probability .....................................................................................................11 
3.1.2 Specifying Prior Model Probability .....................................................................................................12 

 
3.2 Maximum Likelihood Bayesian Model Averaging ..................................................................................12 

 
3.2.1 A Few Words About KIC ....................................................................................................................13 
3.2.2 Applicability of MLBMA....................................................................................................................14 

 
3.3 Summary of MLBMA ..............................................................................................................................14 

 
4 Example Application ...........................................................................................................................................17 
 

4.1 Implementation of MLBMA ....................................................................................................................17 
4.2 ALRS Data and Previous Efforts..............................................................................................................17 

 
4.2.1 Alternative Models and Maximum Likelihood Parameter Estimation ................................................18 
4.2.2 Posterior Model Probabilities ..............................................................................................................19 

4.2.2.1 Sensitivity to Prior Model Probabilities ..........................................................................................19 
4.2.3 Kriging Results ....................................................................................................................................20 

 
4.3 Assessment Of Predictive Performance....................................................................................................29 

 
4.3.1 Predictive Log Score............................................................................................................................29 
4.3.2 Predictive Coverage.............................................................................................................................30 

 
5 Conclusions .........................................................................................................................................................37 
 
6 References ...........................................................................................................................................................39 
 



 
vi

Appendix A. Distribution Coefficients, Kd, and Associated Uncertainty..................................................................A-1 
 

A.1 Introduction ............................................................................................................................................A-1 
A.2 Background ............................................................................................................................................A-1 

 
A.1.1  Contaminant Adsorption onto Natural Mineral Surfaces...................................................................A-1 
A.1.2  Empirical Approaches to Adsorption Modeling ................................................................................A-2 
A.1.3  Surface Complexation Approach to Adsorption Modeling................................................................A-2 
A.1.4  Non-Electrostatic Surface Complexation Models..............................................................................A-3 

 
A.2 Sources of Kd Value Uncertainty............................................................................................................A-4 
A.3 Variability in Kd Values and the Impact on Transport Calculations.......................................................A-5 
A.4 Determination of Kd Values and Associated Uncertainly.......................................................................A-6 

 
A.4.1  Systematic Approach for Determination of Kd Values and Associated Uncertainty .........................A-6 
A.4.2  Determination of Uranium Kd Values and Associated Uncertainty with Iterative Refinement .........A-7 

 
A.5 References ..............................................................................................................................................A-8 
 

Figures 

2-1. Photograph of a trench face from an excavation in the 200 Area of the Hanford Site, Washington......................5 

2-2. Ratio of estimated to true parameter values for variance and correlation length of transmissivity for seven 
different inverse methods ......................................................................................................................................6 

2-3. Use of data/information in parameter estimation ...................................................................................................7 

2-4. Types and uses of data sources and information for characterizing hydrogeologic parameter uncertainty  
in dose assessments for license termination decisions...........................................................................................8 

2-5. A schematic representation of the relationship between alternative conceptual-mathematical models .................9 

3-1. Maximum Likelihood Bayesian Model Averaging (MLBMA) approach to combined estimation of model  
and parameter uncertainty....................................................................................................................................16 

4-1 Spatial locations of 184 1-m-scale log10k data at ALRS .......................................................................................17 

4-2. Omni-directional sample variogram of 1-m-scale log10k data at the ALRS and numbers of data pairs ...............18 

4-3. Negative log likelihood functions (NLL) as function of each variogram parameter and drift coefficient  
for exponential model with linear drift (Exp1). ...................................................................................................20 

4-4. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the power model (Pow0).................23 

4-5. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the exponential model without  
drift ......................................................................................................................................................................24 

4-6. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the exponential model with  
first-order drift .....................................................................................................................................................25 

4-7. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the spherical model with  
first-order drift ....................................................................................................................................................26 

4-8. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using MLBMA .........................................27 

4-9. (a) Within- and (b) between-model variance of MLBMA log10k estimates at y = 6.5 m .....................................28 



 
vii

4-10. Cumulative distribution of kriged log10k estimates obtained using various models and MLBMA....................29 

4-11. Omni-directional sample variograms of all data and all but data from borehole (a) V2, X2, Y2 and  
(b) Y3, Z2, W2A..................................................................................................................................................31 

4-12. Dependence of power variogram (Pow0) (a) parameters and (b) quality criteria on data ..................................32 

4-13. Posterior model probabilities based on (a) BIC and (b) KIC upon eliminating data from designated  
borehole ...............................................................................................................................................................33 

4-14. 5% and 95% limits of simulated prediction interval of log10k along borehole X2 .............................................34 

4-15. Cumulative distribution of simulated log10k values at a measurement location in borehole (a) V2 and  
(b) Y3...................................................................................................................................................................35 

4-16. Sample variances of log10k values simulated using various models and MLBMA along borehole (a) V2  
and (b) Y3 while eliminating the corresponding data..........................................................................................36 

 

Tables 

1-1. Summary of radiological criteria for license termination.......................................................................................1 

4-1. Quality criteria, rankings and prior/posterior probabilities associated with alternative geostatistical models .....21 

4-2. Variance of kriged estimates across the grid obtained with alternative models and MLBMA ............................22 

4-3. Number of log10k data in DA of each cross validation case and their percentage of the entire data set. ...............29 

4-4. Average predictive log score and predictive coverage of individual models and MLBMA.................................30 

 

 





 
ix

Executive Summary

In its performance assessments of decommissioning 
sites and other nuclear facilities, the U.S. Nuclear 
Regulatory Commission (NRC) staff uses a risk-
informed, performance-based approach in which 
evaluation of risk is an integral part of, but not the sole 
basis for, decision making. The risk is, in part, 
manifested as uncertainty in estimates of dose. The 
importance of assessing uncertainty in dose is made 
clear by considering the following: 

• long regulatory time frames (e.g., 1000 years),  
• complex exposure pathways involving 

multiple media,  
• relatively small incremental doses, and 
• potentially limited site-specific 

characterization data. 

The objective of the research described in this report is 
the development and application of a methodology for 
comprehensively assessing the hydrogeologic 
uncertainties involved in dose assessment modeling. 
For methodological purposes, prediction uncertainty is 
classified as being associated with one of three basic 
components of dose assessment models: 

• the conceptual-mathematical basis of the 
model,  

• model parameters, or  
• the scenario to which the model is applied.  

This report describes and applies a method to estimate 
the combined uncertainty in model predictions arising 
from conceptual model and parameter uncertainties. A 
future report will include the analysis of scenario 
uncertainty. 

The primary steps involved in addressing uncertainty in 
model parameters are 

• characterization of parameter uncertainty, 
• propagation of parameter uncertainty into 

model output uncertainty, and 
• parameter sensitivity analysis. 

Parameter estimation, including the characterization of 
parameter uncertainty, is driven by the available data 
and information. In the most data-limited case, prior 
parameter estimates are based on available information 
that does not include site-specific parameter 
measurements. These estimates represent the largest 
degree of uncertainty. Meyer and Gee (1999) discuss 
data sources for characterizing hydrogeologic 
parameter uncertainty in the context of dose assessment 
modeling for license termination decisions. They 

suggest the application of a hierarchy of data from 
national-scale databases (referred to as generic 
information) to site-specific measurements of 
parameter values. Site-specific parameter 
measurements, when available, can be used to update 
the prior estimates (Meyer et al., 1997), thereby 
decreasing parameter uncertainty. A similar 
methodology for the characterization of probability 
distributions for (adsorption) distribution coefficients is 
being developed as part of the research reported here 
(see Appendix A). 

When observations of system state variables (e.g., 
hydraulic head, radionuclide concentration) are 
available at a site, formal calibration methods, using an 
inverse model, can be used to improve parameter 
estimates and characterize the uncertainty of these 
estimates. Calibrated parameter estimates represent the 
application of the maximum amount of 
data/information and yield parameters with the 
minimum uncertainty (Wang et al., 2003). Because 
they rely on an inverse model, calibrated parameter 
estimates are model-dependent. In fact, most 
calibration methods assume the model is correct. Errors 
thus represent the uncertainty in parameters given that 
the model is correct. This will underestimate parameter 
uncertainty.  

Relying on a single conceptual representation of a 
system has two potential pitfalls: the rejection by 
omission of valid conceptual model alternatives, and 
reliance on an invalid representation by failing to 
adequately test it. The potential consequences are 
underestimation of uncertainty by under-sampling 
model space and biased results by relying on an invalid 
model. To obtain realistic risk estimates, effort should 
thus be made to evaluate multiple, alternative 
conceptualizations of the system being analyzed. 

Any approach based on evaluation of a discrete set of 
alternative models will only be as good as the set of 
alternatives. That is, if the set of alternatives does not 
represent the full range of possibilities, conceptual 
model uncertainty will be underestimated. In Neuman 
and Wierenga’s (2003) extensive discussion of 
conceptual model uncertainty they provide some 
advice on the generation of alternatives, summarized as 
follows. 

• From the assembled database of site-specific 
data and other relevant information, consider 
alternative representations of space-time 
scales, number and type of hydrogeologic 
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units, flow and transport property 
characterization, system boundaries, initial 
conditions, fast flow paths, controlling 
transport phenomena, etc. 

• Each conceptual model alternative should be 
supported by key data. 

• Minimize inconsistencies, anomalies, and 
ambiguities. 

• Apply the principle of Occam’s window 
according to which one considers only a 
relatively small set of the most parsimonious 
models among those which, a priori, appear to 
be hydrologically most plausible in light of all 
knowledge and data relevant to the purpose of 
the model and, a posteriori, explain the data in 
an acceptable manner. 

• Maximize the number of experts involved in 
the generation of alternative 
conceptualizations. 

• Articulate uncertainties associated with each 
alternative conceptualization. 

Having defined the set of alternatives, the options for 
addressing conceptual model uncertainty include the 
following. 

• Evaluate each alternative and select the best 
model, either through an informal comparison 
or through evaluation of a formal model 
selection criterion. 

• Evaluate each alternative and combine the 
results using some weighting scheme. 

When multiple model conceptualizations are consistent 
with the available data, it may not be justifiable to rely 
on a single model structure. The method described here 
relies on model averaging to combine the predictions 
of alternative models. The weights applied to each 
model’s predictions are estimated model probabilities. 

The method uses a Maximum Likelihood 
implementation of Bayesian Model Averaging 
(MLBMA) described by Neuman (2003). If ∆  is the 
predicted quantity (e.g., dose), its posterior distribution 
given a set of data D is 

 ( ) ( ) ( )
1

,
K

k k
k

p p M p M
=

∆ = ∆∑D D D  (E-1) 

where M = ( )1,..., KM M  is the set of all models 
considered. The posterior probability for model kM  is 
a function of the prior model probability and the model 
likelihood, as given by Bayes’ rule, 
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The solution of these equations is accomplished by 
maximum likelihood estimation of each model’s 
parameters. 

Prior model probabilities in Equation E-2 [p(Mk ) and 
p(Ml )]are subjective values reflecting a belief about the 
relative plausibility of each model based on its 
apparent consistency with available knowledge and 
data. Posterior model probabilities are modifications of 
these subjective values based on an objective 
evaluation of each model’s consistency with available 
data. Hence, the posterior probabilities are valid only in 
a comparative, not in an absolute, sense. 

The maximum likelihood method can be applied to 
complex and simplified models as long as each model 
in the set of alternatives is based on the same data (Ye 
et al., 2003). It can be applied to deterministic models 
and also to stochastic models based on moment 
equations (Hernandez et al., 2003). Application of 
maximum likelihood also yields parameter sensitivity 
information. 

Including prior information in the maximum likelihood 
calibration is an option, which allows one to condition 
the parameter estimates not only on site monitoring 
(observational) data but also on site characterization 
data, potentially rendering the model a better predictor.  

Maximum likelihood allows the statistical parameters 
characterizing the parameter and state variable errors to 
be estimated. When these statistical parameters are 
known (i.e., not estimated), maximum likelihood 
reduces to generalized least squares estimation. In this 
case, available codes such as PEST and UCODE can 
be applied. 

Maximum likelihood estimation yields an approximate 
covariance matrix for the parameter estimation errors. 
Assuming these errors to be Gaussian or log Gaussian, 
the probability distribution of model output 
[ ( ),kp M∆ D  in Equation E-1] can be determined by 

Monte Carlo simulation of ∆ through random 
perturbation of the parameters. If the model is a 
geostatistical model or a stochastic moment model, it 
yields the expected value and variance of its output 
directly without Monte Carlo simulation. 

In the most data-limited application, one in which there 
are no system observations with which to calibrate a 
model and the only available parameter information is 
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that available from generic databases, Equation E-1 
reduces to  

( ) ( ) ( )
1

K

k k
k

p p M p M
=

∆ = ∆∑ . 

That is, model predictions can still be made using prior 
parameter estimates and model averaging can still be 
carried out, but only with prior model probabilities. 
Since the predictions and model probabilities are not 
conditioned on state variable observations, however, 
the results are expected to be more uncertain and 
potentially more biased.  

To implement MLBMA the following steps are 
followed.  

(1) Postulate alternative conceptual-mathematical 
models for a site using guidance provided in 
Neuman and Wierenga (2003). 

(2) Assign a prior probability to each model.  

(3) Optionally assign prior probabilities to the 
parameters of each model, using, for example, 
guidance provided in Meyer and Gee (1999).  

(4) Obtain posterior maximum likelihood 
parameter estimates, and estimation 
covariance, for each model by inversion 
(model calibration). In many cases, available 
codes such as PEST and UCODE can be 
applied to this step.  

(5) Calculate a posterior probability for each 
model using the model calibration results and 
the prior model probabilities. 

(6) Predict quantities of interest using each 
model.  

(7) Assess prediction uncertainty (distribution, 
variance) for each model using Monte Carlo 
or stochastic moment methods. 

(8) Weight predictions and uncertainties by the 
corresponding posterior model probabilities.  

(9) Sum the results over all models. 

To evaluate MLBMA, it was applied to seven 
alternative variogram models of log air permeability 
data from single-hole pneumatic injection tests in six 

boreholes at the Apache Leap Research Site (ALRS) in 
central Arizona. Unbiased ML estimates of variogram 
and drift parameters were obtained using adjoint state 
maximum likelihood cross validation in conjunction 
with universal kriging and generalized least squares. 
Standard information criteria provided an ambiguous 
ranking of the models, which did not justify selecting 
one of them and discarding all others as is commonly 
done in practice. Instead, three of the models were 
eliminated based on their negligibly small posterior 
probabilities and the remaining four models were used 
to project the measured log permeabilities by kriging 
onto a rock volume containing the six boreholes. These 
four projections, and associated kriging variances, were 
averaged using the posterior probability of each model 
as weight.  

Finally, the results were cross-validated by eliminating 
from consideration all data from one borehole at a 
time, repeating the above process, and comparing the 
predictive capability of MLBMA with that of each 
individual model. The predictive capabilities of the 
alternative models and the MLBMA result were 
compared through their log scores. The lower the 
predictive log score of a model, the smaller the amount 
of information lost upon eliminating a borehole’s data 
from the original dataset (i.e., the higher the probability 
that the model based on the reduced dataset would 
reproduce the eliminated borehole’s data).  

Another measure of model performance is its 
predictive coverage. This is the percent of 
measurements from the eliminated borehole’s data that 
fall within a given prediction interval generated by 
conducting Monte Carlo simulations of log air 
permeability conditioned on the data from the 
remaining boreholes.  

The table below lists the average log score for the three 
model alternatives with the highest posterior 
probability, as well as the average of corresponding 
MLBMA scores. The average predictive log score of 
MLBMA is seen to be smaller than that of any 
individual model, indicating that MLBMA is a better 
predictor than any of the single model alternatives. The 
table also shows the predictive coverage of MLBMA, 
which is larger than that of any individual model, 
attesting once again to its superior performance.

Model Pow0 Exp0 Exp1 MLBMA 
Predictive log score 34.1 35.2 34.0 31.4 
Predictive coverage (%) 86.5 80.8 83.7 87.5 

Table E-1.  Comparison of MLBMA with individual model alternatives 
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Foreword

This technical contractor report was prepared by Pacific Northwest National Laboratory1 (PNNL) under their DOE 
Interagency Work Order (JCN Y6465) with the U.S. Nuclear Regulatory Commission.  This research report 
describes an approach for integrating two methodologies developed to assess uncertainties: one for evaluating 
hydrologic conceptual model uncertainty as documented in NUREG/CR-6805, and the second for estimating 
hydrologic parameter uncertainty as documented in NUREG/CR-6767.  This report provides both the logic 
developed and examples demonstrating the approach using field data.  The detailed input and analyses for the real-
world examples are presented in the report's appendix and may be useful in decommissioning reviews of complex 
sites.  This report is consistent with the NRC strategic performance goal of making NRC activities and decisions 
more effective, efficient, and realistic by identifying and estimating uncertainties. 
 
The report demonstrates, using examples relevant to decommissioning analyses, that sources of uncertainty can be 
identified, quantified, and integrated using a comparative model analysis approach.  The report illustrates the 
effectiveness of the integrated methodology to estimate uncertainty in model predictions arising from both 
conceptual and parameter uncertainties. This information will assist NRC licensing staff, Agreement State 
regulators, and licensees in their decision making by identifying and quantifying overall uncertainties in 
performance assessment models. 
 
This report, as with the previous reports on individual sources of uncertainty, is not a substitute for NRC regulations, 
and compliance is not required. The approaches and/or methods described in this NUREG/CR are provided for 
information only. Publication of this report does not necessarily constitute NRC approval or agreement with the 
information contained herein. Use of product or trade names is for identification purposes only and does not 
constitute endorsement by the NRC or Pacific Northwest National Laboratory. 
 
 
 
 
 
Cheryl A. Trottier, Chief 
Radiation Protection, Environmental Risk and Waste Management Branch 
Division of System Analysis and Regulatory Effectiveness 
Office of Nuclear Regulatory Research

                                                           

1 Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial 
Institute under contract DE-AC06-76RLO 1830. 
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1 Introduction

In its performance assessments of decommissioning 
sites and other nuclear facilities, the U.S. Nuclear 
Regulatory Commission (NRC) staff uses a risk-
informed, performance-based approach in which 
evaluation of risk is an integral part of, but not the sole 
basis for, decision making. NRC regulatory criteria are 
often written in terms of dose. For example, the 
primary regulatory criterion for license termination is a 
maximum dose for the period up to 1000 years from 
the time of decommissioning (see Table 1-1). One 
might argue that risk (such as the risk of premature 
death) could be derived from knowledge of exposure to 
a particular dose. When, however, estimating that dose 
involves predictions of contaminant transport and 
exposure via complex contaminant exposure pathways 
over a 1000-year period, then there is an obvious 
additional component of uncertainty contributing to 
risk. That component is the uncertainty in the estimate 
of dose. The importance of assessing uncertainty in 
dose is made clear by considering 

• the long regulatory time frame,  
• complex exposure pathways involving 

multiple media,  
• the relatively small incremental dose specified 

in the regulations, and 
• potentially limited site-specific 

characterization data. 

 In the license termination case, the result of a 
quantitative assessment of this uncertainty will be an 
estimate of the probability distribution of dose to the 
average member of the critical group for the 1000-year 
period following decommissioning. 

There are numerous sources of uncertainty that are 
potentially significant contributors to an estimate of the 
probability of dose. This is a consequence of the 
multiple potential exposure pathways. The analysis 
presented in this report only addresses the pathways 
involving transport of radionuclides in water. For 
license termination, that includes a residential farmer 
scenario in which exposure comes from the use of 
contaminated groundwater for home, garden, and farm. 
Thus, the uncertainties considered are those related to 
transport from a source (typically near the ground 
surface) through unsaturated soils and groundwater to 
an exposure point via a pumped well or surface water 
body. The methods described here are general, 
however, and could be applied to other exposure 
scenarios. 

Although the analysis described here is limited to 
hydrogeologic uncertainty, it is comprehensive in the 
sense that all types of hydrogeologic uncertainty are 
considered. Uncertainty is defined, for the purposes of 
this study, as a lack of certainty due to 

•  incomplete knowledge of the system being 
analyzed;  

• measurement or sampling error in 
characterizing the system’s features, events, 
and processes;  

• variability in the system’s properties;  
• disparity among the sampling, simulation, and 

actual scales of the system’s features, events, 
and processes; and  

• randomness in the system’s stresses, 
particularly transient external stresses, often in 
a short-time context.  

Table 1-1. Summary of radiological criteria for license termination (10 CFR Part 20 Subpart E) (from Meyer 
and Gee, 1999).  (TEDE – Total Effective Dose Equivalent; ALARA – As Low As Reasonably 
Achievable) 

 Unrestricted Release Restricted Release 

Dose Criterion 
25 mrem TEDE per year peak 

annual dose to the average 
member of the critical group 

25 mrem TEDE per 
year peak annual dose 
to the average member 

of the critical group 
while controls are in 

place 

100 or 500 mrem TEDE 
per year peak annual 
dose to the average 

member of the critical 
group upon failure of 

the controls 

Time Frame 1000 years 1000 years 

Other Requirements ALARA ALARA, financial assurance, public participation 
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Note that this definition includes uncertainty that can 
be reduced with sufficient data (sometimes referred to 
as subjective or epistemic uncertainty; see Helton 
1996) and uncertainty that is an irreducible 
characteristic of the system (sometimes referred to as 
stochastic or aleatory uncertainty). An example of the 
former is uncertainty about the continuity (thickness) 
of a low permeability hydrostratigraphic unit. 
Examples of the latter are the annual recharge rate over 
the next 1000 years, or the stage of a river 
hydraulically connected to a groundwater system. It is 
often argued that these two broad types of uncertainty 
should be kept separate in the application of 
uncertainty analysis methods (Helton, 1994; Ayyub 
and McCuen, 2003); this may improve the ability to 
draw correct conclusions about the important factors 
leading to system success/failure and the value of 
additional data. Winkler (1996) suggests that 
uncertainties that appear irreducible may, in fact, often 
be a function of the available knowledge (i.e., 
subjective). For example, river stage may be inherently 
variable, but that variability could, in principle, be 
entirely accounted for if a sufficiently detailed 
hydrologic model and the associated data were 
available. Winkler (1996) argues that distinctions 
between types of uncertainty are largely related to 
sources of information and that it is more useful to 
think in terms of what is needed to accomplish the 
modeling task: adequate decomposition of the problem, 
combining various sources of information, assessing 
the value of additional data, and effectively utilizing 
sensitivity analysis. This is the viewpoint adopted in 
this report. 

Models are generally used to make consistent, 
quantitative assessments of future dose required by 
criteria such as that given in Table 1-1. Although we do 
not strictly distinguish between subjective and 
stochastic types of uncertainty, from a methodological 
perspective we classify uncertainty as being associated 
with one of three basic components of dose assessment 
models: 

• the conceptual-mathematical basis of the 
model,  

• model parameters, or  
• the scenario to which the model is applied.  

The model conceptual basis can be thought of as a 
hypothesis about the behavior of the system being 
modeled and the relationships between the components 
of the system. This conceptualization is typically 
represented mathematically to render quantitative 
predictions; thus it is appropriate to talk about a 
conceptual-mathematical model (sometimes referred to 
as model structure). The model parameters are the 
quantities required to obtain a solution from the model 

(and thus are model-specific). A scenario is defined 
here as a future state or condition assumed for a system 
that is the result of an event, process, or feature that 
was not assumed in the initial base case definition of 
the system and diverges significantly from the initial 
base case. A scenario may be imposed by humans (e.g., 
irrigation schemes and ground-water extraction) but 
may also be natural (e.g., glaciation and flooding). 
Scenarios are often considered in a long-time context. 
Only hydrologically related aspects of scenario 
uncertainty are included in this analysis.  

The objective of the research described in this report is 
the development and application of a methodology for 
comprehensively assessing the uncertainties involved 
in dose assessment, including uncertainties associated 
with conceptual models, parameters, and scenarios. In 
addressing this problem we have generally adopted a 
Bayesian viewpoint. The merits of a Bayesian 
(subjectivist) approach to probability relative to a 
classical (frequentist) approach have been discussed in 
many publications (e.g., Martz and Waller, 1988; 
Abramson, 1988). Our approach is Bayesian primarily 
for practical reasons. Quantification of hydrogeologic 
uncertainty for dose assessments must often deal with 
very limited observations of site characteristics. 
Generic and indirect data can be and generally are used 
to infer site properties. For example, geologic 
characteristics may be inferred from analysis of 
outcrops, hydraulic characteristics may be estimated 
from soil-textural information, and radionuclide 
adsorption characteristics may be assigned from a 
database of values measured at other sites under a 
variety of conditions. In addition, the assessment of 
conceptual model and scenario probabilities seems 
inherently subjective. The Bayesian approach provides 
a means to incorporate different types of data and 
subjective judgments into the assessment of 
uncertainty. 

This report describes and applies a method to estimate 
the combined uncertainty in model predictions arising 
from conceptual model and parameter uncertainties. 
The inclusion of scenario uncertainty will be described 
in a future report. Chapter 2 provides some background 
on the quantification of parameter and conceptual 
model uncertainty. A related discussion of an approach 
being developed as part of this project for evaluating 
uncertainty in the distribution coefficient parameter is 
included in Appendix A. Chapter 3 describes the 
maximum likelihood Bayesian model averaging 
method, a general method for combining quantitative 
estimates of conceptual model and parameter 
uncertainty. Chapter 4 is an application of this method 
to the geostatistical modeling of air permeability at a 
fractured rock site. This application was chosen 
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because the site is a relatively well-controlled 
experimental research site with good characterization 
data. In addition the results of past studies at the site 
were available to us. Applications that are more 
reflective of actual NRC-regulated sites will be the 
focus of future efforts.  

The developments described here are being 
coordinated with other Federal agencies cooperating 
under the Interagency Steering Committee on 
Multimedia Environmental Models Memorandum of 

Understanding (ISCMEM MOU) (see  
http://ISCMEM.org). Results reported here have been 
discussed with members of the Working Group on 
Uncertainty and Parameter Estimation organized under 
the steering committee and have been presented at the 
International Workshop on Uncertainty, Sensitivity, 
and Parameter Estimation for Multimedia 
Environmental Modeling, held August 19-21, 2003, at 
NRC Headquarters and organized by the Working 
Group.
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2 Quantification of Parameter and Conceptual Model Uncertainty

2.1 Parameter Uncertainty 

2.1.1 Sources of Parameter Uncertainty 

The sources of uncertainty outlined in the previous 
chapter that contribute to hydrogeologic parameter 
uncertainty can be clearly illustrated with the aid of 
Figure 2-1, a photo of a trench face from an excavation 
in the 200 Area of the Hanford Site. A large variation 
in soil particle size can be seen, ranging from fine silts 
to very coarse gravels. The profile shows a layered 
structure with evidence of cross-bedding; the scale of 
the structures is on the order of a few centimeters. This 
variation results in hydraulic and transport properties 
that may vary over several orders of magnitude on this 

same small scale. Measurements are likely to be made 
on a somewhat larger scale, perhaps 10 cm or more. 
Exhaustive sampling to determine the exact nature of 
the subsurface at this scale will be impossible, thus 
requiring interpolation between measurements and 
other indirect methods to estimate properties at 
unmeasured locations. In addition, the simulation scale 
for most practical applications (and thus the scale of 
the parameters) is likely to be significantly larger than 
the measurement scale, from a few tens of centimeters 
to many meters.  

The impact of measurement errors on parameter 
uncertainty is often felt to be small relative to other 
sources of uncertainty and easily quantified. Holt et al. 
(2002) provide some evidence that relatively simple 

Figure 2-1. Photograph of a trench face from an excavation in the 200 Area of 
the Hanford Site, Washington (photograph by John Selker, 
Oregon State University). 
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measurement errors can introduce significant parameter 
uncertainties. They simulated tension infiltrometer 
measurements with added pressure transducer error 
(observation error) and contact error (inversion error). 
They used the simulated measurements to estimate the 
variance and correlation length of the parameters of the 
Gardner hydraulic conductivity model over a range of 
true values representing poorly-sorted to well-sorted 
silt to coarse sand. The ratio of estimated to true 
parameter values (for the variances and correlation 
lengths) ranged from less than 0.5 to more than 2.5. 
These are significant errors for parameters representing 
the average characteristics of a site. Holt et al. (2002) 
also observed that the modeled errors produced 
spurious parameter correlations, an effect that has 
likely been poorly appreciated in most applications. 

An additional source of parameter uncertainty that has 
likely not been fully appreciated can be illustrated 
using results presented in Zimmerman et al. (1998). 
They compared results from seven models calibrated 
on the same set of data by different participant groups 
using different inverse methods. The ratio of estimated 
to true parameter values for the variance and 
correlation length of the transmissivity are shown in 
Figure 2-2 for each of the inverse methods used. The 
true transmissivity field was synthetically generated. 

An exponential model was fit to the average empirical 
variogram for a set of realizations obtained from each 
inverse method.  The results shown are for Test 
Problem 1, the simplest transmissivity model used (an 
isotropic, exponential variogram). Nonetheless, the 
parameter errors resulting simply from the use of 
different inverse methods (and participants) were 
significant.   

2.1.2 Analysis of Parameter Uncertainty 

The analysis of parameter uncertainty has received 
much attention in the literature. Helton (1993) and 
McKay (1995) provide discussions of parameter 
uncertainty that are particularly relevant to dose 
assessment modeling. The primary steps involved in 
addressing uncertainty in model parameters are 

• characterization of parameter uncertainty, 
• propagation of parameter uncertainty into 

model output uncertainty, and 
• parameter sensitivity analysis. 

Parameter estimation, including the characterization of 
parameter uncertainty, is driven by the available data 
and information. Figure 2-3 is a simple representation 
of the parameter estimation process, where it is 
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Figure 2-2. Ratio of estimated to true parameter values for variance and correlation length of 
transmissivity for seven different inverse methods. Results from Test Problem 1 of 
Zimmerman et al. (1998). (FF=Fast Fourier Transform, FS=Fractal Simulation, 
LC=Linearized Cokriging, LS=Linearized Semianalytical, ML=Maximum Likelihood, 
PP=Pilot Point, SS=Sequential Self-Calibration) 
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assumed that the process provides not only parameter 
estimates, but also some measure of the parameter 
uncertainty. This could take the form of bounding 
values, variances, or specific distributional forms. At 
the lower left are prior parameter estimates based on 
available information that does not include site-specific 
parameter measurements. This information may 
include a compilation of parameter values  from 
numerous sites, or data from analogous sites. The prior 
parameter estimates represent the largest degree of 
uncertainty and the least amount of site-specific data. 
In the center of Figure 2-3 are updated (posterior) 
parameter estimates that are based on the prior 
estimates but include the effect of site-specific 
parameter measurements. They represent a decrease in 
parameter uncertainty from the prior estimates. 

Meyer and Gee (1999) discuss data sources for 
characterizing hydrogeologic parameter uncertainty in 
the context of dose assessment modeling for license 
termination decisions. They suggest the application of 
a hierarchy of data from national-scale databases 
(referred to as generic information) to site-specific 
measurements of parameter values. Their methodology 
is represented schematically in Figure 2-4. Information 
from the national-scale databases is used by Meyer and 
Gee (1999) to specify prior parameter distributions that 
can be updated subsequently in a Bayesian approach 
using site-specific parameter data (Meyer et al., 1997), 
which is expected to be sparse or non-existent at many 
of the decommissioning sites. In data-limited 
applications parameter probability distributions can 
also be based on the subjective opinions of one or more 

experts. Formal procedures are available to provide 
consistency in the elicitation of expert opinions 
regarding probabilities (Morgan and Henrion, 1990). A 
methodology relying on generic databases, however, 
has the advantage of being less expensive and more 
easily applied to a wide variety of sites. The 
methodology is currently being extended to include the 
characterization of probability distributions for 
(adsorption) distribution coefficients of selected 
radionuclides (see Appendix A). 

When observations of state variables (e.g., hydraulic 
head, radionuclide concentration) are available at a site, 
formal calibration methods can be used to improve 
parameter estimates and characterize the uncertainty of 
these estimates (Hill, 1998). As shown in the upper 
right of Figure 2-3, this involves the application of an 
inverse model. These calibrated parameter values may 
include the effect of the site-specific parameter 
measurements. In this case the updated parameter 
estimates shown in Figure 2-3 are referred to as the 
prior parameter estimates for the calibration. Calibrated 
parameter estimates represent the application of the 
maximum amount of data/information and yield 
parameters with the minimum uncertainty. An 
application to unsaturated flow presented in Wang et 
al. (2003) illustrates the relationships between the data 
used in parameter estimation and the resulting 
prediction uncertainty. 

Note that prior and updated parameter estimates may 
be independent of a model. As discussed in Meyer and 
Gee (1999), however, there must be a correspondence 

Figure 2-3. Use of data/information in parameter estimation 
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between the estimates and the parameters assigned 
those estimates, e.g., a model that has a single value of 
a parameter representing a site must be assigned a 
value that represents a mean. Similarly, the uncertainty 
in that parameter value must represent uncertainty in 
the mean. Because they rely on an inverse model, 
calibrated parameter estimates are model-dependent. In 
fact, most calibration methods assume the model is 
correct. Errors thus represent the uncertainty in 
parameters given that the model is correct. This will 
underestimate parameter uncertainty. 

Zimmerman et al. (1998) evaluated a variety of 
calibration methods using a set of hypothetical 
(generated) data based on the Waste Isolation Pilot 
Plant site. Transmissivity fields for two-dimensional 
groundwater flow models were calibrated on four test 
problems. One of their conclusions was that the 
calibrated models consistently underestimated the 
“true” variability in transport. The maximum likelihood 
(Carrera and Neuman, 1986a) and sequential self-
calibration (Gomez-Hernandez et al., 1997) methods 
were consistently ranked higher than the other 
methods. The sequential self-calibration method offers 
the advantage of producing spatially variable 
transmissivity fields that honor the spatial statistics of 
the transmissivity field. A calibrated, stochastic 
groundwater simulation can be carried out using a set 
of these fields in a Monte Carlo simulation. The 
maximum likelihood method is more general, however, 
and can be applied to the calibration of a wide variety 

of parameters, including statistical parameters. 
Maximum likelihood is used in the method and 
application described in Chapters 3 and 4. 

Computer codes that can be adapted to the calibration 
of any simulation model have recently become 
available (Poeter and Hill, 1998; Doherty, 2002). One 
of these codes, PEST (Doherty, 2002) was used in the 
application presented in Chapter 4. A method for 
calibrating geostatistically-simulated parameter fields 
(similar to the sequential self-calibration method) has 
recently been demonstrated using PEST (Doherty, 
2003).  

A variety of methods for propagating parameter 
uncertainty are available, including Monte Carlo 
simulation, the first-order, second-moment method 
(Kunstmann et al., 2002), the stochastic response 
surface method (Isukapalli et al. 1998), and stochastic 
moment methods (Dagan and Neuman, 1997; Zhang, 
2001). Monte Carlo simulation is the most generally 
applicable method and was used in the application 
presented in Chapter 4. The stochastic moment 
methods are appealing because of their potential 
computational advantage over Monte Carlo simulation. 
Recent progress in handling conditions that introduce 
nonstationarities (Zhang, 2001) have made these 
methods more generally applicable.  

Uncertainties must be defined on a site-specific basis 
and the importance of individual sources may vary site 

Generic Information from
Regional/National Sources

e.g., UNSODA, NUREG/CR-6565

Local Information from 
Regional/National Sources, e.g., 

Natl.Soil Char. Dbase, STATSGO, 
SSURGO, NCDC, NWIS, GWIS

Local Information from Local Sources
e.g., Extension Service, State 

Agencies, University/Industry Experts

Site-specific direct measurements

Types of Information Application of Information

Best Estimates,
Modify Uncertainty Distributions

Parameter Uncertainty Distributions,
Bounding Values, Best Estimates in 

the absence of site-specific data
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the absence of site-specific data

Modify Uncertainty Distributions and
Bounding Values, Best Estimates in 
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Increasingly Site-Specific

Figure 2-4. Types and uses of data sources and information for characterizing hydrogeologic 
parameter uncertainty in dose assessments for license termination decisions (from 
Meyer and Gee, 1999). Acronyms refer to various databases. 
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by site or even with different objectives at the same 
site. Determination of the parameters that are most 
important to the prediction uncertainty is the final 
element of an assessment of parameter uncertainty. 
This is generally carried out through the 
implementation of sensitivity analysis (Saltelli et al., 
2000a; Helton, 1993). Meyer and Taira (2001) applied 
differential, graphical, and sampling-based methods of 
sensitivity analysis to decommissioning problems. 
Sensitivity measures may also be obtained during the 
calibration procedure (Hill, 1998; Tiedeman et al., 
2003). Global sensitivity methods (Borgonovo et al, 
2003; Saltelli et al., 2000b; McKay, 1995) partition the 
total prediction variance according to the contribution 
of each parameter and also determine the contribution 
to prediction variance due to interactions between 
parameters. A sensitivity analysis was not conducted 
for the application described in Chapter 4. 

2.2 Conceptual Model Uncertainty 
The sources of uncertainty described in the previous 
sections result in multiple valid representations of 
parameter values. That is, for a given model structure, 
there will be multiple sets of parameter values that 
provide valid representations of observed system 
behavior. In a similar manner, the same sources of 
uncertainty may result in valid alternative model 
structures or conceptualizations. When multiple model 
conceptualizations are consistent with the available 
data, it may not be justifiable to rely on a single model 
structure. Relying on a single conceptual representation 
of a system has two potential pitfalls: the rejection by 
omission of valid alternatives, and reliance on an 
invalid representation by failing to adequately test it. 
The potential consequences are underestimation of 
uncertainty by under-sampling model space and biased 
results by relying on an invalid model.  

When discussing model uncertainty, it is instructive to 
view model structure as the combination of a 

conceptual model and a mathematical model: a 
conceptual-mathematical model (Neuman and 
Wierenga, 2003). The conceptual model can be thought 
of as a hypothesis about the system behavior and the 
relationship between system components. It is 
primarily qualitative and comprehensive. The 
mathematical model can be thought of as a process to 
test the conceptual model hypothesis. It is a 
quantitative, possibly simplified implementation of the 
conceptual model. 

Figure 2-5 illustrates the relationship between 
alternative conceptual-mathematical models. Each 
conceptual model is based on the available site data 
and other relevant information and represents a distinct 
conceptualization of system characterization or 
behavior. For example, alternative conceptual models 
might be represented by the presence and absence of 
leakage from an underlying aquifer; or the presence 
and absence of matrix-fracture interaction in a 
fractured rock. In addition, a single conceptual model 
may be implemented in more than one way: for 
example, a fractured rock may be represented as an 
equivalent porous medium or as a discrete network of 
fractures. The process of conceptual-mathematical 
model development may be iterative as additional site 
data becomes available and conceptual models are 
updated.  

In this report, “conceptual model uncertainty” should 
be interpreted as “conceptual-mathematical model 
uncertainty,” representing uncertainty in either the 
conceptual model or its mathematical implementation. 

2.2.1 Analysis of Conceptual Model 
Uncertainty 

Methods for the quantification of conceptual model 
uncertainty are much less well established than those 
addressing parameter uncertainty. Mosleh et al. (1994) 
provide a good introduction to the issues involved. 

Site Data & Other 
Information

Conceptual Model 1 Conceptual Model 2

Mathematical Model 1 Mathematical Model 2 Mathematical Model 3

Site Data & Other 
Information

Conceptual Model 1 Conceptual Model 2

Mathematical Model 1 Mathematical Model 2 Mathematical Model 3

Figure 2-5. A schematic representation of the relationship between alternative conceptual-mathematical 
models 
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Neuman and Wierenga (2003) discuss a wide variety of 
issues related to hydrogeologic conceptual model 
uncertainty, including many instances of its practical 
importance.  

While it is generally possible to specify a reasonable 
probability distribution representing the complete set of 
possibilities for the value of a parameter, it is not 
generally possible to specify the complete set of 
possible conceptual model alternatives. As a result, 
conceptual model uncertainty has generally been 
represented as a discrete distribution, with a small 
number of model alternatives taken as the complete set 
of possibilities. In the generic example of Figure 2-5, 
the complete set of possibilities consists of three 
conceptual-mathematical model alternatives. Having 
defined the set of alternatives, the options for 
addressing conceptual model uncertainty include the 
following. 

• Evaluate each alternative and select the best 
model. This may be carried out through an 
informal comparison (James and Oldenburg, 
1997; Cole et al., 2001) or through evaluation 
of a formal model selection criterion 
(Burnham and Anderson, 2002). As discussed 
previously, selection of a single model may 
not always be justifiable. 

• Evaluate each alternative and combine the 
results using some weighting scheme, such as 
the likelihood-based weighting of Beven and 
Freer (2001), the multimodel ensemble 
approach of Krishnamurti et al. (2000), the 
model likelihood weighting of Burnham and 
Anderson (2002), and the model probability 
weighting of Draper (1995).  

Neuman (2003) reviews a number of approaches that 
have been used to address conceptual model 
uncertainty. The method he proposes, a version of the 
model averaging method described in Draper (1995), 
was used here and is discussed in detail in the 
following chapter. 

Any approach based on evaluation of a discrete set of 
alternative models will only be as good as the set of 
alternatives. That is, if the set of alternatives does not 
represent the full range of possibilities, conceptual 
model uncertainty will be underestimated.  In Neuman 
and Wierenga’s (2003) extensive discussion of 
conceptual model uncertainty, they provide some 
advice on the generation of alternatives, summarized as 
follows. 

• From the assembled database of site-specific 
data and other relevant information, consider 
alternative representations of space-time 
scales, number and type of hydrogeologic 
units, flow and transport property 
characterization, system boundaries, initial 
conditions, fast flow paths, controlling 
transport phenomena, etc. 

• Each conceptual model alternative should be 
supported by key data. 

• Minimize inconsistencies, anomalies, and 
ambiguities. 

• Apply the principle of Occam’s window 
(Jefferys and Berger, 1992; Madigan and 
Raftery, 1994) according to which one 
considers only a relatively small set of the 
most parsimonious models among those 
which, a priori, appear to be hydrologically 
most plausible in light of all knowledge and 
data relevant to the purpose of the model and, 
a posteriori, explain the data in an acceptable 
manner. 

• Maximize the number of experts involved in 
the generation of alternative 
conceptualizations. 

• Articulate uncertainties associated with each 
alternative conceptualization. 

Because the set of alternative conceptual models is 
unlikely to represent the full range of possibilities, 
evaluations of model uncertainty should be viewed as 
relative comparisons. That is, they may be used to 
conclude that one model is better than another for the 
intended purpose, but they cannot necessarily be used 
to conclude that any model is a good model. In 
addition, as stated above, the contribution of model 
uncertainty to overall prediction uncertainty will be 
underestimated.  

Gaganis and Smith (2001) presented a unique analysis 
based on Bayes Factors for calculating an absolute 
measure of conceptual model uncertainty for a single 
model (that is, without comparison to alternative 
models). We evaluated this method using two synthetic 
examples of groundwater flow in which model 
structural errors were introduced through a boundary 
flux and a source term error. Parameter uncertainty was 
represented by a random field of transmissivity. 
Although head and parameter measurements were 
error-free and all driving forces other than the specified 
model errors were known, the method of Gaganis and 
Smith (2001) provided inconsistent estimates of the 
(known) model uncertainty. Based on these results, we 
feel the method is, at best, not generally applicable.
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3 Combining Parameter and Conceptual Model Uncertainty

This chapter discusses a method to provide an optimal 
way of combining the predictions of several alternative 
models and assessing their joint predictive uncertainty, 
with consideration of parameter and conceptual model 
uncertainty. This method relies on the specification of a 
set of alternative models (with the consequent 
limitations discussed in the previous chapter and 
below) and weights the alternative model results by a 
measure of the model probabilities. The method was 
originally proposed by Neuman (2002). 

3.1 Bayesian Model Averaging  
A formal method of evaluating prediction uncertainty 
with full consideration of model uncertainty is 
Bayesian Model Averaging (BMA) (Draper, 1995; 
Hoeting et al., 1999). Using the notation of Hoeting et 
al. (1999), if ∆  is the predicted quantity, its posterior 
distribution given a set of data D is 

 ( ) ( ) ( )
1

,
K

k k
k

p p M p M
=

∆ = ∆∑D D D  (1) 

where M = ( )1,..., KM M  is the set of all models 
considered, at least one of which must be correct. As 
discussed in the previous chapter, Neuman and 
Wierenga (2003) provide guidance on selecting a set of 
models that is small enough to be computationally 
feasible yet large enough to represent the breadth of 
significant possibilities.  

In (1), ( )p ∆ D  is the average of the posterior 

distributions ( ),kp M∆ D  under each model, weighted 

by their posterior model probabilities ( )kp M D . The 

posterior probability for model kM  is given by Bayes’ 
rule, 
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where  

 ( ) ( ) ( ),k k k k k kp M p M p M d= ∫D D θ θ θ  (3) 

is the integrated likelihood of model kM ,  

kθ  is the vector of parameters associated with model 

kM , ( )k kp Mθ  is the prior density of kθ  under 

model kM , ( ),k kp MD θ  is the joint likelihood of 

model kM  and its parameters kθ , and ( )kp M  is the 
prior probability that kM  is the correct model. All 
probabilities are implicitly conditional on M. 

The posterior mean and variance of ∆  are (Draper, 
1995) 
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In (5), the first term on the right-hand side represents 
within-model variance; the second term represents 
between-model variance. Note that the predictive 
probabilities (1) and leading moments (4) – (5) are 
weighted by the posterior probabilities of the individual 
models. 

3.1.1 Interpretation of Model Probability 

Philosophical difficulties with the BMA approach have 
been discussed by Winkler (1993) and center on the 
interpretation of ( )kp M  as the probability that kM  is 
the correct model and the method’s requirement that 
one of the kM  is in fact the correct model. Winkler 
(1993) argues that, although this interpretation is 
intuitively appealing, the existence of a “correct” 
model is questionable since all models are 
approximations of reality.  

One approach to these philosophical difficulties is to 
interpret model probability in relative terms (e.g., Zio 
and Apostolakis, 1996), where the model with the 
greatest probability is the “best” model (and all model 
probabilities sum to one). Winkler (1993) suggests that 
this means ( ),kp M∆ D  must be interpreted as being 
conditional to the “best” model, and asks whether there 
is utility in that interpretation if the “best” model is not 
very good. As discussed in the previous chapter, basing 
the analysis on a set of model alternatives that do not 
encompass all possibilities implies a relative 
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comparison between models. We thus interpret prior 
model probabilities to be subjective values reflecting 
the analyst’s belief about the relative plausibility of 
each model based on its apparent (qualitative, a priori) 
consistency with available knowledge and data.  

Whereas prior model probabilities must in our view 
remain subjective, the posterior model probabilities are 
modifications of these subjective values based on an 
objective evaluation of each model’s consistency with 
available data. Hence, the posterior probabilities are 
valid only in a comparative, not in an absolute, sense. 
They are conditional on the choice of models (in 
addition to being conditional on the data) and may be 
sensitive to the choice of prior model probabilities (as 
demonstrated later by example). This sensitivity is 
expected to diminish with increased level of 
conditioning on data. 

3.1.2 Specifying Prior Model Probability 

Given a set of alternative models, M, one formally 
assumes that their prior probabilities sum up to one, 

 ( )
1

1
K

k
k

p M
=

=∑ . (6) 

This implies that all possible models of relevance are 
included in M (the set is collectively exhaustive), and 
that all models in M differ from each other sufficiently 
to be considered mutually exclusive (the joint 
probability of any two models is zero), at the outset. 
Mutually exclusive models are not redundant; they 
produce different results for the same set of inputs. In 
practice, it may be impossible to demonstrate that the 
set of models is collectively exhaustive. In this case, 
model uncertainty may be underestimated, a condition 
implied by the fact that all probabilities computed 
using BMA are conditional on M, as stated previously.  

With regard to prior model probability, when there is 
insufficient prior reason to prefer one model over 
another, a “reasonable ‘neutral’ choice” (Hoeting et al., 
1999) is to assume that all models are a priori equally 
likely. Draper (1995) and George (1999) express 
concern that if two models are near equivalent as 
regards predictions (i.e., redundant), treating them as 
separate equally likely models amounts to giving 
double weight to a single model of which there are two 
slightly different versions, thereby “diluting” the 
predictive power of BMA. One way to minimize this 
effect is to eliminate at the outset models that are 
deemed potentially inferior. Another is to retain only 
models that are structurally distinct and non-collinear. 
Otherwise, one should consider reducing (diluting) the 

prior probabilities assigned to models that are deemed 
closely related. We explore this idea through an 
example in the following chapter. 

3.2 Maximum Likelihood Bayesian 
Model Averaging (MLBMA) 

Computational difficulties in the BMA approach 
include the calculation of ( ),kp M∆ D  in (1) and 

( )kp MD  in (3), which may require exhaustive 
Monte Carlo simulations of the prior parameter space 

kθ  for each model. This may be computationally and 
hydrologically very demanding. Approximating 

( ),kp M∆ D  by ( )ˆ, ,k kp M∆ θ D , where ˆ
kθ  is the 

maximum likelihood (ML) estimate of kθ  based on the 

likelihood ( ),k kp MD θ , was suggested by Taplin 
(1993) and was shown to be useful in the BMA context 
by Draper (1995), Raftery et al. (1996) and Volinsky et 
al. (1997). 

Neuman (2002, 2003) proposed evaluating the 
posterior model probability, ( )kp M D , based on a 
result due to Kashyap (1982) and referred to the 
resulting method as Maximum Likelihood BMA 
(MLBMA). Kashyap derived an expression for 
( )kp M D  by expanding the terms in the integrand of 

(3) in a Taylor series about ˆ
kθ . A related approach 

based on Laplace approximations has been used in the 
BMA context by Draper (1995) and Kass and Raftery 
(1995). Kashyap’s expression can be written (Ye et al., 
2003) as 

 ( )
( )

( )
1

1exp
2

1exp
2

k k

k K

l l
l

KIC p M
p M

KIC p M
=

⎛ ⎞− ∆⎜ ⎟
⎝ ⎠=
⎛ ⎞− ∆⎜ ⎟
⎝ ⎠

∑
D  (7) 

where 

 mink kKIC KIC KIC∆ = − , (8) 

 ( )ˆln ln ,
2k k k k k k
NKIC NLL N M
π

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

D θF  (9) 

KICk is the so-called Kashyap information criterion for 
model kM , KICmin is its minimum value over all 
candidate models, and 

( ) ( )ˆ ˆ2 ln , 2 lnk k k k kNLL p M p M− −= D θ θ  the 

negative log likelihood of kM  evaluated at ˆ
kθ . Here 
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k
N  is the dimension of kθ  (number of parameters 

associated with model kM ), N is the dimension of D 

(number of discrete data points), and kF  is the 
normalized (by N) observed (as opposed to ensemble 
mean) Fisher information matrix having components 

 
( )2

,
ˆ

1 ln ,k k
k ij

i j
k k

p M
F

N θ θ
=

∂
= −

∂ ∂ θ θ

D θ
 (10) 

In the absence of prior information about the 
parameters, one simply drops the term 

( )ˆ2 ln k kp M− θ  from kNLL . This reflects common 
practice in model calibration. 

Increasing the number of parameters Nk allows 
( )ˆln ,k kp M− D θ  to decrease and lnkN N  to 

increase. When Nk is large, the rate of decrease does 
not compensate for the rate of increase and KICk grows 
while ( )kp M D  diminishes. This means that a more 
parsimonious model with fewer parameters is ranked 
higher and assigned a higher posterior probability. On 
the other hand, ( )ˆln ,k kp M− D θ  diminishes with N at 
a rate higher than linear so that as the latter grows, 
there may be an advantage to a more complex model 
with larger Nk. 

The last term in (9) reflects the information content of 
the available data. It thus enables consideration of 
models of growing complexity as the data base 
improves in quantity and quality. As illustrated by 
Carrera and Neuman (1986b), KICk recognizes that 
when the data base is limited and/or of poor quality, 
one has little justification for selecting an elaborate 
model with numerous parameters. Instead, one should 
prefer a simpler model with fewer parameters, which 
nevertheless reflects adequately the underlying 
hydrologic structure and regime of the system. Stated 
otherwise, KICk may cause one to prefer a simpler 
model that leads to a poorer fit with the data over a 
more complex model that fits the data better. 

As shown in Ye et al. (2003), alternative models can 
have different types and numbers of parameters, but the 
latter must be estimated and the models compared 
considering a single data set D. For a comparison of 
two- and three-dimensional models, data distributed in 
three-dimensional space may need to be projected onto 
a two-dimensional plane as done by Ando et al. (2003) 
or averaged in the third dimension as suggested by 
Neuman and Wierenga (2003, Appendix B). 

3.2.1 A Few Words About KIC 

Previously, KICk has been used (e.g., Carrera and 
Neuman, 1986a,b; Samper and Neuman, 1989a,b) as an 
optimum decision rule for the ranking of competing 
models. The highest-ranking model is that 
corresponding to minKIC .  Note that KIC has no 
intrinsic meaning; it is only the differences between 
KIC values that have meaning. Thus the use of 

KIC∆ in (7) reflects the interpretation of ( )kp M D as 
a relative probability suitable for comparing the models 
within the set M.  

The Fisher information matrix term in (9) tends to a 
constant as N becomes large, so that KICk becomes 
asymptotically equivalent to the Bayes information 
criterion 

 lnk k kBIC NLL N N= +  (11) 

derived on the basis of other considerations by Akaike 
(1977), Rissanen (1978) and Schwarz (1978). Raftery 
(1993) proposed adopting the asymptotic BIC 
approximation, without the prior information term 

( )ˆ2 ln k kp M− θ , for BMA (see also Raftery et al. 
1996; Volinsky et al. 1997; Hoeting et al. 1999). From 
(11) it follows that (7) tends asymptotically to 

 ( )
( )

( )
1

1
exp

2
1

exp
2

k k

k K

l l
l

BIC p M
p M

BIC p M
=

− ∆
=

− ∆

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
D  (12) 

where 

 mink kBIC BIC BIC∆ = −  (13) 

and minBIC  is the smallest value of BICk over all 
candidate models (see also Burnham and Anderson, 
2002, pp. 297). 

Since hydrologic models are often data limited, the 
asymptotic expression (12) is less general than the 
nonasymptotic expression (7) that is at the heart of 
MLBMA. Indeed, Carrera and Neuman (1986a,b) and 
Samper and Neuman (1989a,b) found KICk to provide 
more reliable rankings of alternative groundwater flow 
and geostatistical models than do BICk or two other 
commonly used information criteria:  

2k k kAIC NLL N= +  (Akaike, 1974) and 

( )2 ln lnk k kHIC NLL N N= +  (Hannan, 1980). 
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For a recent overview of various information criteria 
the reader is referred to Burnham and Anderson (2002, 
p. 284). 

3.2.2 Applicability of MLBMA 

Using the maximum likelihood method has several 
advantages. It can be applied to both complex and 
simplified models. It can be applied to deterministic 
models as described by Carrera and Neuman (1986a,b) 
and Carrera et al. (1997) and also to stochastic models 
based on moment equations as demonstrated by 
Hernandez et al. (2002, 2003). Application of 
maximum likelihood also yields parameter sensitivity 
information. 

Including prior information in the maximum likelihood 
calibration is an option that allows one to condition the 
parameter estimates not only on site monitoring 
(observational) data but also on site characterization 
data, from which prior parameter estimates are usually 
derived. When both sets of data are considered to be 
statistically meaningful, the posterior parameter 
estimates are compatible with a wider array of 
measurements than they would be otherwise and are 
therefore better constrained (potentially rendering the 
model a better predictor).  

Maximum likelihood yields a negative log likelihood 
criterion kNLL  that includes two weighted square 
residual terms: a generalized sum of squared 
differences between simulated and observed state 
variables arising from ( )ˆ2 ln ,k kp M− D θ , and a 
generalized sum of squared differences between 
posterior and prior parameter estimates arising from 

( )ˆ2 ln k kp M− θ . The first is weighted by a matrix 
proportional to the inverse covariance matrix of state 
observation errors. The second is weighted by a matrix 
proportional to the inverse covariance matrix of prior 
parameter estimation errors. Maximum likelihood 
allows the statistical parameters of the errors to be 
estimated. When these statistical parameters are known 
(i.e., not estimated), maximum likelihood reduces to 
generalized least squares estimation. In this case, 
available codes such as PEST (Doherty, 2002) and 
UCODE (Poeter and Hill, 1998) can be applied. 

Maximum likelihood estimation yields an approximate 
covariance matrix for the estimation errors of ˆ

kθ . 
Upon considering the parameter estimation errors of a 
calibrated deterministic model kM  to be Gaussian or 

log Gaussian, one easily determines ( )ˆ, ,k kp M∆ θ D  

by Monte Carlo simulation of ∆  through random 
perturbation of the parameters. The simulation also 
yields corresponding approximations [ ]ˆ, ,k kE M∆ θ D  

of [ ],kE M∆ D , and [ ]ˆ, ,k kVar M∆ θ D  of 

[ ],kVar M∆ D , in (4) and (5). If kM  is a geostatistical 
model (as in the example below) or a stochastic 
moment model (of the kind considered by Hernandez 
et al. (2002, 2003), it yields [ ]ˆ, ,k kE M∆ θ D  and 

[ ]ˆ, ,k kVar M∆ θ D  directly without Monte Carlo 
simulation. 

One final point regarding the applicability of MLBMA. 
In the most data-limited application, one in which there 
are no system observations with which to calibrate a 
model and the only available parameter information is 
that available from generic databases, Equation 1 
reduces to  

( ) ( ) ( )
1

K

k k
k

p p M p M
=

∆ = ∆∑ . 

That is, model predictions can still be made using prior 
(or updated) parameter estimates (see Figure 2-3) and 
model averaging can still be carried out, but only with 
prior model probabilities. Since the predictions and 
model probabilities are not conditioned on state 
variable observations, however, the results are 
expected to be more uncertain and potentially more 
biased.  

3.3 Summary of MLBMA 
To implement MLBMA the following steps are 
followed.  

(1) Postulate alternative conceptual-mathematical 
models for a site using guidance provided in 
Neuman and Wierenga (2003). 

(2) Assign a prior probability to each model.  

(3) Optionally assign prior probabilities to the 
parameters of each model, using, for example, 
guidance provided in Meyer and Gee (1999).  

(4) Obtain posterior maximum likelihood 
parameter estimates, and estimation 
covariance, for each model by inversion 
(model calibration). In many cases, available 
codes such as PEST  (Doherty, 2002) and 
UCODE (Poeter and Hill, 1998) can be 
applied to this step.  
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(5) Calculate a posterior probability for each 
model using the model calibration results and 
the prior model probabilities as expressed in 
Equations 7 to 9. 

(6) Predict quantities of interest using each 
model.  

(7) Assess prediction uncertainty (distribution, 
variance) for each model using Monte Carlo 
or stochastic moment methods. 

(8) Weight predictions and uncertainties by the 
corresponding posterior model probabilities.  

(9) Sum the results over all models. 

A flowchart illustrating the MLBMA approach to 
combined estimation of conceptual model and 
parameter uncertainty is shown in Figure 3-1. Numbers 
in parentheses above the boxes refer to the numbered 
steps above. 

The following chapter provides an example application 
of MLBMA and an evaluation of its performance and 
suitability.
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Figure 3-1. Maximum Likelihood Bayesian Model Averaging (MLBMA) approach to combined 
estimation of model and parameter uncertainty 
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4 Example Application

4.1 Implementation of MLBMA 
To demonstrate the application of MLBMA and to 
evaluate the results, we apply it to alternative 
geostatistical models of log air permeability variations 
in unsaturated fractured tuff at the Apache Leap 
Research Site (ALRS) in central Arizona. This site was 
chosen for an initial application of MLBMA because it 
is a relatively well-controlled experimental research 
site with good characterization data. The results of past 
studies at the site were available to us as well, which 
facilitated the application of MLBMA. In addition, the 
models considered (geostatistical models of 
permeability) are relatively simple, thus reducing the 
computational effort required to complete the 
application. We recognize that an example considering 
groundwater flow and transport would better reflect 
NRC-regulated sites. However, we see no fundamental 
barrier in applying MLBMA to the more complex 
models required in such applications. Any difficulties 
in applying MLBMA to groundwater flow and 
transport applications will be explored in a case-study 
using actual field data that is the focus of future efforts.  

4.2 ALRS Data and Previous 
Efforts 

Spatially distributed log air permeability data were 
obtained by Guzman et al. (1994, 1996) based on a 

steady state interpretation of 184 pneumatic injection 
tests in 1-m-length intervals along 6 vertical and 
inclined (at 45o) boreholes at the site (Figure 4-1). Five 
of the boreholes (V2, W2A, X2, Y2, Z2) are 30-m long 
and one (Y3) has a length of 45 m; five (W2A, X2, Y2, 
Y3, Z2) are inclined at 45o and one (V2) is vertical.  

Figure 4-2 shows an omni-directional sample 
variogram of corresponding 10log k data. Chen et al. 
(2000) fitted three variogram models to these and some 
3-m-scale data using an adjoint state maximum 
likelihood cross-validation (ASMLCV) method 
developed for this purpose by Samper and Neuman 
(1989a,b), coupled with a generalized least squares 
(GLS) drift removal approach due to Neuman and 
Jacobson (1984). The three models included (1) power 
(characteristic of a random fractal), (2) exponential 
with a linear drift, and (3) exponential with a quadratic 
drift. The data did not support accounting for 
directional effects by considering the variograms to be 
anisotropic.  

The authors found that whereas the exponential 
variogram model with a quadratic drift provided a best 
fit to the data (as measured and implied by the smallest 
negative log-likelihood model fit criterion, NLL), four 
model discrimination criteria (AIC, BIC, HIC, KIC) 
consistently ranked the power model as best, and the 
former model as least acceptable. The reason was that 
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Figure 4-1. Spatial locations of 184 1-m-scale log10k data at ALRS 
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whereas all three models provided an almost equally 
good fit to the data, the power model was most 
parsimonious with only two parameters, and the 
exponential variogram model with second-order drift 
was least parsimonious with twelve parameters. They 
therefore adopted the power model and discarded all 
other variogram models from further consideration. 

4.2.1 Alternative Models and Maximum 
Likelihood Parameter Estimation 

For purposes of MLBMA we expand the range of 
variogram models postulated for 1-m-scale 10log k  at 
the ALRS to seven: (1) Power (Pow0), (2) exponential 
without a drift (Exp0), (3) exponential with a linear 
drift (Exp1), (4) exponential with a quadratic drift 
(Exp2), (5) spherical without a drift (Sph0), (6) 
spherical with a linear drift (Sph1), and (7) spherical 
with a quadratic drift (Sph2).  

To estimate the parameter vector β  of drift-free 
variogram models (Pow0, Exp0, Sph0) we use 
ASMLCV as described in Ye et al. (2003), 
implemented in a computer code slightly modified after 
Samper (1998, personal communication). To do the 
same for models with drift (Exp1, Exp2, Sph1, Sph2), 
we decompose the N-dimensional data vector D of 

log10k measurements into a deterministic drift vector µ  
and a random residual vector R, 

 = +D µ R  (14) 

 
0

( ) ( )
p

k k
k

g a
=

= =∑µ x x Ga  (15) 

where ( )0 1, , ...,
T

pa a a=a  is a vector of p+1 drift 

coefficients and G is a ( 1)N p× +  matrix of linearly 
independent monomial functions ( )kg x  evaluated at 
the data points xn, 1, 2,...,n N= .  

Assuming that D is multivariate Gaussian with mean µ 
and covariance matrix CR (Vesselinov 2000 has shown 
that the data pass the Kolmogorof-Smirnov test of 
univariate Gaussianity at a significance level of 0.05), 
the joint negative log likelihood function of drift and 
variogram parameters takes the form   

( , | ) 2 ln ( | , )NLL p= −a β D D a β  

 1ln 2 ln ( ) ( ) ( )( )T

R RN π −= + + − −C β D Ga C β D Ga (16) 

Minimizing (16) jointly with respect to a and β yields 
biased estimates of the variogram parameters, a 
problem that can be remedied through the use of a 
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restricted ML (RML) approach (Hoeksema and 
Kitanidis, 1985; Kitanidis and Lane, 1985; Cressie, 
1991, p. 92). We solve the problem differently by 
formally decoupling the ML estimations of a and β. 
First, we obtain unbiased ML estimates β̂  of the 
variogram parameters using ASMLCV in conjunction 
with universal kriging (ASMLCV-UK, Samper 1998, 
personal comm.), which does not require knowledge of 
the drift coefficients (Ye et al., 2003). Next, we 
compute corresponding unbiased ML estimates â  of 
the drift coefficients through minimization of 

ˆ( , | )NLL a β D  

 1ˆ ˆln 2 ln ( ) ( ) ( )( )T

R RN π −= + + − −C β D Ga C β D Ga (17) 

with respect to a by generalized least squares, a task we 
accomplish using PEST-ASP (Doherty, 2002). Our 
optimum NLL is then given by 

ˆˆ( , | )NLL a β D  

 1ˆ ˆˆ ˆln 2 ln ( ) ( ) ( )( )T

R RN π −= + + − −C β D Ga C β D Ga .(18) 

Figure 4-3 depicts profiles of ( , | )NLL a β D  in (16) 
versus each parameter of model Exp1 when the 
remaining parameters are fixed. It clearly demonstrates 
that β̂  (the marked values of sill and integral scale [m) 
does not correspond to the minimum of ( , | )NLL a β D , 
which would therefore yield biased estimates of 
variogram parameters. 

The estimation covariance matrix of ( )ˆ ˆˆ,
T

=θ a β  is 
generally represented by its asymptotic lower or 
Cramer-Rao bound, given by the inverse Fisher 
information matrix (e.g., Carrera et al., 1997). 
Components of the observed Fisher information matrix 
(10) are proportional to those of the Hessian matrix H 
which, in turn, can be approximated as (Kitanidis and 
Lane, 1985) 

( )2

,
ˆ

ln ,

k k

k k
k ij

i j

p M
H

θ θ
=

∂
= −

∂ ∂
θ θ

D θ
 

 1 1 1

ˆ

1

2
k k

T
R R

R R R
i j i j

Tr − − −

=

∂ ∂ ∂ ∂
≈ +

∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠ θ θ

C C R R
C C C

θ θ θ θ
(19) 

This approximation obviates the need to calculate 
second-order derivatives of the log likelihood function, 
which would be computationally more demanding than 
computing first-order derivatives of RC  and R. In our 

case, the latter are easy to obtain analytically as done 
for exponential and spherical variogram models with 
drift (Ye, et al., 2003). An alternative, which in our 
case yields very similar results, is to compute the 
observed Fisher information matrix numerically using 
methods such as the Ridder algorithm (Press et al., 
1992, pp. 180). 

4.2.2 Posterior Model Probabilities 

Table 4-1 confirms that increasing the number of 
parameters associated with a given class of variogram 
model (exponential or spherical) brings about an 
improvement in model fit, as indicated by a reduction 
in the negative log likelihood criterion NLL. Whereas 
the exponential variogram model with a quadratic drift 
(Exp2) fits the data best (ranks first in terms of fit due 
to its smallest NLL value), it is ranked second by AIC 
and sixth by BIC and KIC. Whereas the power model 
(Pow0) shows a relatively poor fit with the data (rating 
fifth), it is ranked highly (first through third) by all 
three information criteria. The reason is that the 
difference in fit between the two models is not enough 
to compensate for the much more parsimonious nature 
of Pow0 (with 2 parameters) than that of Exp2 (with 12 
parameters).  

The rankings of the seven models by AIC, BIC and KIC 
are not entirely consistent. None of these information 
criteria provide justification for retaining one model 
while discarding all other models as is commonly done 
in practice. Nor do they provide clear justification for 
retaining some models while discarding the rest. We 
therefore consider all seven models to be valid initial 
candidates for MLBMA. 

Upon assigning an equal prior probability of 1/7 to 
each model, we find on the basis of KIC via (7) that the 
first three models (Pow0, Exp0, Exp1) have much 
higher posterior probabilities than do the rest. Three of 
the models (Exp2, Sph0, Sph2) have zero probabilities 
(to three significant figures) and can therefore be 
eliminated (considering the low posterior probability of 
Sph1, there is almost equal justification for eliminating 
it too, but we retain it at this stage for the sake of 
illustration). Doing so and assigning an equal prior 
probability of 1/4 to each of the retained models is seen 
to have no impact on their posterior probabilities. In 
both cases the posterior probabilities are markedly 
different from their prior values, reflecting the strong 
impact of conditioning on data. 

4.2.2.1 Sensitivity to Prior Model Probabilities 

To investigate the influence of prior probability 
selection on the outcome, consider assigning an equal 
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probability of 1/3 to each of the three classes of models 
(power, exponential and spherical) and also assigning 
equal probability to models within each class. This 
results in a prior probability of 1/3 for Pow0 and of 1/9 
for each of the other six models. Though this brings 
about a marked increase in the posterior probability of 
Pow0 and a decrease in those of Exp0 and Exp1, once 
again the posterior probabilities of Exp2, Sph0 and 
Sph2 are zero while that of Sph1 is very close to zero. 
Eliminating the three models with zero posterior 
probability and redistributing the prior probabilities 
among the remaining models as shown in the next-to-

last row of Table 4-1 brings about a decrease in the 
posterior probability of Pow0 and an increase in the 
posterior probabilities of Exp0 and Exp1. We conclude 
that posterior model probabilities exhibit some degree 
of sensitivity to the choice of prior probabilities but 
expect this sensitivity to diminish with improved 
conditioning. 

4.2.3 Kriging Results 

We continue our analysis by retaining four (Pow0, 
Exp0, Exp1, Sph1) of the seven models (with the 
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21

corresponding ML parameter estimates) and assigning 
to each of them an equal prior probability of 1/4. Using 
each of these models, we project the available log10k 
data by ordinary (in the case of drift-free models) or 
universal (otherwise) kriging onto a grid of 50 ×  40 ×  
30 1-m3 cubes contained within the coordinate ranges 

10 40x− ≤ ≤  m, 10 30y− ≤ ≤  m and 30 0z− ≤ ≤  m in 
Figure 4-1.  

If one thinks of ∆  as a random value of log10k in a 
given grid block then our kriging estimates represent 
[ ]ˆ, ,k kE M∆ θ D  and their variances stand for 

[ ]ˆ, ,k kVar M∆ θ D , the ML approximations of 

[ ],kE M∆ D  and [ ],kVar M∆ D  in (4) and (5), 
respectively.  

Figure 4-4 to Figure 4-7 show the kriged estimates and 
variances of log10k on a vertical plane y = 6.5 m for the 
four models. Conditioning on borehole data is evident 
to a lesser degree in the images of log10k estimates than 
in those of their variances. Averaging the kriging 
results across all models using an ML approximation of 
(4) and (5) yields corresponding MLBMA estimates 
and variances of the kind depicted for y = 6.5 m in 
Figure 4-8. Figure 4-9 shows a decomposition of the 
MLBMA estimation variance in Figure 4-8b into its 
within- and between-model components. The largest 
values of these two components throughout the three-
dimensional grid are 1.1 and 0.38, respectively. 
Whereas the within-model MLBMA variance in Figure 
4-9a reflects conditioning on borehole measurements, it 
is difficult to discern such conditioning in the image of 
between-model variance (Figure 4-9b) due to the faint 

Model Pow0 Exp0 Exp1 Exp2 Sph0 Sph1 Sph2 
Number of 
parameters 2 2 6 12 2 6 12 

Sill/Coefficient 0.286 0.718 0.514 0.501 0.749 0.664 0.662 

Correlation/Power 0.460 1.840 1.240 1.198 3.184 2.849 2.835 

NLL 352.2 361.0 341.6 330.4 379.1 349.6 338.8 

Rank 5 6 3 1 7 4 2 

AIC 356.2 365.0 353.6 354.4 383.1 361.6 362.8 

Rank 3 6 1 2 7 5 4 

BIC 362.6 371.4 372.9 392.9 389.5 380.9 401.4 

Rank 1 2 3 6 5 4 7 

KIC 369.6 370.1 369.5 416.7 390.5 378.1 424.6 

Rank 2 3 1 6 5 4 7 

p(Mk) 1/7 1/7 1/7 1/7 1/7 1/7 1/7 

p(Mk|D)(%) 35.3 26.6 37.6 0 0 0.5 0 

p(Mk) 1/4 1/4 1/4 - - 1/4 - 

p(Mk|D)(%) 35.3 26.6 37.6 - - 0.5 - 

p(Mk) 1/3 1/9 1/9 1/9 1/9 1/9 1/9 

p(Mk|D)(%) 62.1 15.6 22.0 0 0 0.3 0 

p(Mk) 1/3 1/6 1/6 - - 1/3 - 

p(Mk|D)(%) 52.0 19.6 27.7 - - 0.7 - 

Table 4-1. Quality criteria, rankings and prior/posterior probabilities associated with alternative 
geostatistical models of log10k at the ALRS 
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reflection of such conditioning in the underlying 
images of log10k estimates. 

Figure 4-10 shows univariate cumulative 
distributions of kriging estimates corresponding 
to each of the four models and MLBMA. The 
distributions are seen to be sensitive to the choice 
of model with MLBMA providing a weighted 
compromise. The same is reflected in the 
variances of these kriged estimates, listed in 
Table 4-2. 

Table 4-2. Variance of kriged estimates across the 
grid obtained with alternative models and 
MLBMA 

Model Variance 

Pow0 0.334 

Exp0 0.134 

Exp1 0.467 

Sph1 0.404 

MLBMA 0.405 
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Figure 4-4. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the power model 
(Pow0) 
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Figure 4-5. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the exponential model 
without drift (Exp0) 
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Figure 4-6. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the exponential model 
with first-order drift (Exp1) 
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Figure 4-7. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using the spherical model with 
first-order drift (Sph1) 
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Figure 4-8. Kriged (a) estimate and (b) variance of log10k at y = 6.5 m obtained using MLBMA
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Figure 4-9. (a) Within- and (b) between-model variance of MLBMA log10k estimates at y = 6.5 m 
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4.3 Assessment of Predictive 
Performance 

To assess the predictive performance of MLBMA, we 
cross-validate the above results by (1) splitting the data 
D into two parts, DA and DB; (2) obtaining ML 
estimates of model parameters and posterior 
probabilities conditional on DA; (3) using these to 
render MLBMA predictions ˆ BD  of DB; and (4) 
assessing the quality of the predictions. We do so by 
eliminating from consideration all log10k data from one 
borehole at a time and predicting them with models 
conditioned on the remaining data. The number and 
corresponding percentage of data in DA for each cross 
validation case are listed in Table 4-3. As Sph1 has a 
very small posterior probability in comparison to 
Pow0, Exp0, and Exp1 (Table 4-1), we limit the cross-
validation to the latter three geostatistical models and 
recalculate their posterior probabilities by assigning to 
each of them a prior probability of 1/3.  

Figure 4-11 shows that eliminating data from one 
borehole at a time may, but need not, have a significant 
impact on the omni-directional sample variogram of 
log10k. The impact that such elimination has on 
parameter estimates and model quality criteria 
associated with Pow0 is indicated in Figure 4-12. 
Figure 4-13 demonstrates that posterior model 
probability is sensitive to the choice of conditioning 
data. This sensitivity is greater when posterior 
probability is computed using KIC in (7) than BIC in 
(12). This illustrates that the non-asymptotic criterion 
KIC is more informative than the asymptotic criterion 

BIC, supporting the choice of the former as the basis 
for MLBMA (Neuman, 2002, 2003).   

4.3.1 Predictive Log Score 

One way to compare the predictive capabilities of 
alternative models is through their log scores, 

ln ( | , )B A

kp M− D D  (Good, 1952; Volinsky et al., 
1997).  The lower the predictive log score of model 

kM  based on data AD , the smaller the amount of 

information lost upon eliminating BD  from the original 
dataset D (i.e., the higher the probability that kM  based 

on AD  would reproduce the lost data, BD ). The 
predictive log score associated with BMA is 

Table 4-3. Number of log10k data in DA of each 
cross validation case and their 
percentage of the entire data set. 

Well Number Percentage (%) 
V2 163 89.1 
X2 154 83.7 
Y2 156 84.8 
Y3 144 78.3 
Z2 156 84.8 

W2A 147 79.9 
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Figure 4-10. Cumulative distribution of kriged log10k estimates obtained using various models and MLBMA 
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Approximating ( | , )B A

kp MD D  by 
ˆ( | , , )B A

k kp MD θ D , and computing ( )A

kp M D  via 

(7) after replacing D by AD , yields a corresponding log 
score for MLBMA. 

Let D̂B  be kriged estimates of log10k data BD  along a 
borehole obtained using variogram model kM  with 

ML parameters ˆ
kθ  based on log10k data AD  in other 

boreholes. Then the ML log score for drift-free models 
Pow0 and Exp0 is (Ye et al., 2003) 
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where 
dN  is the dimension of BD , B

iD  are its 
components, and 2

iσ  is given in Ye et al. (2003, 
Equation B5). In analogy to (17), the ML log score for 
Exp1 is  

1ˆ ˆln ( | , , ) ln(2 ) ln(| ( ) |)
2 2

B A d
k k R k

N
p M− = +D θ D C βπ  

 11 ˆˆ ˆ( ) ( )( )
2

B T B

k k R k k

−+ − −D G a C β D G a  (22) 

Predictive log scores were obtained for each model 
upon eliminating data from one of six boreholes at a 
time. Table 4-4 lists the average of these six scores for 
each model, as well as the average of corresponding 
MLBMA scores (20). The average predictive log score 
of MLBMA is seen to be lower than that of any 

individual model, indicating that MLBMA is a better 
predictor than any of these models. 

4.3.2 Predictive Coverage 

 Another measure of model performance is its 
predictive coverage (Hoeting et al., 1999). This is the 
percent of measurements B

iD  that fall within a given 

prediction interval about ˆ B

iD . In our case, this interval 
was generated by conducting Monte Carlo simulations 
of log10k conditioned on AD . We used a simulated 
annealing code (Deutsch and Journel, 1998, p. 183) to 
allow generation of statistically nonhomogeneous 
random fields characterized by a power variogram. 
Figure 4-14a-c show 90% prediction intervals (dashed) 
defining the 5% and 95% limits of 500 simulations 
along borehole X2 using individual models with ML 
parameter estimates conditioned on measurements in 
the remaining five boreholes. Figure 4-14d shows 
averages of these intervals over the three models, 
weighted by their posterior probabilities. The percent 
of measurements (triangles) lying within these and 
similar intervals, associated with all six boreholes, 
defines predictive coverage as listed in Table 4-4. The 
predictive coverage of MLBMA is larger than that of 
any individual model, attesting once again to its 
superior performance. 

Figure 4-15 depicts the cumulative distributions of 
simulated values at two measurement locations in 
boreholes V2 and Y3 obtained using individual models 
and MLBMA, while eliminating data from the 
corresponding boreholes. The measured values are 
indicated by vertical lines. In both cases the MLBMA 
distribution is strongly influenced by that of Pow0 and 
weakly affected by Exp1. Figure 4-16 shows sample 
predictive variances obtained using individual models 
and MLBMA at measurement points along each of the 
two boreholes. Along V2, Pow0 with a posterior 
probability of about 83% exerts an overwhelming 
influence on the predictive variance of MLBMA, 
which is however lower (closer to those of Exp0 and 
Exp1). Along Y3, individual models tend to be 
associated with a somewhat lower predictive variance 
than MLBMA.  

Overall, MLBMA is a more reliable predictor than any 
individual model, as indicated by its relatively small 
predictive log score and large predictive coverage. 

 

 

Model Predictive 
Log Score 

Predictive 
Coverage (%) 

Pow0 34.1 86.5 
Exp0 35.2 80.8 
Exp1 34.0 83.7 

MLBMA 31.4 87.5 

Table 4-4. Average predictive log score and 
predictive coverage of individual 
models and MLBMA 
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 Figure 4-11. Omni-directional sample variograms of all data and all but 
data from borehole (a) V2, X2, Y2 and (b) Y3, Z2, W2A 
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Figure 4-12. Dependence of power variogram (Pow0) (a) parameters and (b) quality criteria on data. In (a), 
symbols designate parameter estimates obtained without data from designated borehole; 
broken and dashed lines indicate parameters obtained with all data. 
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Figure 4-13. Posterior model probabilities based on (a) BIC and (b) KIC upon eliminating data from 
designated borehole 



 
34

Test interval

lo
g 10

k

10 20 30-18

-17

-16

-15

-14

-13
(a)Pow0

Test interval

lo
g 10

k

10 20 30-18

-17

-16

-15

-14

-13
(c) Exp1

Test interval

lo
g 10

k

10 20 30-18

-17

-16

-15

-14

-13
(d) MLBMA

Test interval

lo
g 10

k

10 20 30-18

-17

-16

-15

-14

-13
(b)Exp0

 

 

Figure 4-14. 5% (bottom dashed) and 95% (top dashed) limits of simulated prediction 
interval of log10k along borehole X2. Triangles designate measured values. 



 
35

log10k

E
m

pi
ric

al
cd

f

-18 -17 -16 -15 -14 -13 -120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pow0
Exp0
Exp1
BMA

log10k=-16.106

(a)

log10k

C
um

ua
lti

ve
di

st
rib

ut
io

n

-18 -17 -16 -15 -14 -13 -120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log10k=-16.106

(a)

Pow0
Exp0
Exp1
MLBMA

log10k

C
um

ul
at

iv
e

di
st

rib
ut

io
n

-18 -17 -16 -15 -14 -13 -120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
log10k=-14.203(b)

Pow0
Exp0
Exp1
MLBMA

 

 

Figure 4-15. Cumulative distribution of simulated log10k values at a 
measurement location in borehole (a) V2 and (b) Y3. Vertical line 
indicates measured value. 
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Figure 4-16. Sample variances of log10k values simulated using various models and MLBMA along borehole 
(a) V2 and (b) Y3 while eliminating the corresponding data 
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5 Conclusions

The objective of the research described in this report is 
the development and application of a methodology for 
comprehensively assessing the hydrogeologic 
uncertainties involved in dose assessment modeling. 
For methodological purposes, uncertainty is classified 
as being associated with the conceptual-mathematical 
basis of the model, model parameters, or the scenario 
to which the model is applied.  

This report describes and applies a method to estimate 
the joint uncertainty in model predictions arising from 
conceptual model and parameter uncertainties. 
Analyses of model uncertainty based on a single 
hydrologic concept are prone to statistical bias (by 
potential reliance on an invalid model) and 
underestimation of uncertainty (by under-sampling of 
the relevant model space). Bias and uncertainty 
resulting from an inadequate model structure 
(conceptualization) are often more detrimental to a 
model’s predictive reliability than are suboptimal 
model parameters. 

Bayesian Model Averaging (BMA) provides an 
optimal but computationally demanding way of 
combining the predictions of several competing models 
and assessing their joint predictive uncertainty. The 
Maximum Likelihood version (MLBMA) of BMA 
proposed by Neuman (2002, 2003), and described and 
applied in this report, renders the approach 
computationally feasible and applicable to real-world 
hydrologic problems. It applies to deterministic and 
stochastic models, to complex and simplified models.  

Whereas BMA requires specifying a prior distribution 
for model parameters, MLBMA accepts but does not 
require such prior information. This is so because, 
contrary to BMA, MLBMA relies on maximum 
likelihood model calibration against observational data.  

In the most data-limited application, one in which there 
are no system observations with which to calibrate a 
model and the only available parameter information is 
that available from generic databases, model 
predictions can still be made using prior parameter 
estimates and model averaging can still be carried out, 
but only with prior model probabilities. Since the 
predictions and model probabilities are not conditioned 
on state variable observations, however, the results are 
expected to be more uncertain and potentially more 
biased.  

A further benefit of the use of maximum likelihood is 
that the optimization can yield parameter sensitivity 

information. In addition, when the statistical 
parameters characterizing the parameter and state 
variable errors are known (i.e., not estimated), 
maximum likelihood reduces to generalized least 
squares estimation. In this case, available codes such as 
PEST and UCODE can be applied. 

Prior model probabilities are subjective values 
reflecting a belief about the relative plausibility of each 
model based on its apparent consistency with available 
knowledge and data. Posterior model probabilities are 
modifications of these subjective values based on an 
objective evaluation of each model’s consistency with 
available data. Hence, the posterior probabilities are 
valid only in a comparative, not in an absolute, sense. 

MLBMA is based on Kashyap’s (1982) information 
criterion, KIC, more commonly used as an optimum 
decision rule for the ranking of competing models. 
Like KIC, MLBMA favors models which, among a 
given set of alternatives, are least likely to be incorrect. 
It honors the principle of parsimony by favoring the 
least complex among models which, otherwise, fit 
observational data equally well. Among models of 
equal complexity, MLBMA favors those exhibiting the 
best fit. It additionally contains an information term 
which allows one to consider models of growing 
complexity as the dataset improves in quantity and 
quality. Stated otherwise, MLBMA recognizes that 
when the dataset is limited and/or of poor quality, one 
should assign relatively low weights to elaborate 
models with numerous parameters. One should weigh 
more heavily simpler models with fewer parameters 
that nevertheless reflect adequately the underlying 
hydrologic structure and phenomena. 

The example application confirms that the non-
asymptotic criterion KIC is more informative than its 
asymptotic limit BIC, supporting the choice of the 
former as the basis for MLBMA.   

Models considered in MLBMA may have different 
types and numbers of parameters, but the latter must be 
estimated and the models weighted based on a single 
dataset. As an example, to analyze jointly two- and 
three-dimensional models via MLBMA, a given set of 
three-dimensional data must be used and either 
projected onto a two-dimensional plane or averaged in 
the third dimension for inclusion in the two-
dimensional model(s). 

Application of MLBMA to alternative geostatistical 
models of log air permeability variations in unsaturated 
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fractured tuff has shown it to be a better predictor of 
spatial variability than any individual model. 

To implement MLBMA the following steps are 
followed.  

(1) Postulate alternative conceptual-mathematical 
models for a site using guidance provided in 
Neuman and Wierenga (2003). 

(2) Assign a prior probability to each model.  

(3) Optionally assign prior probabilities to the 
parameters of each model, using, for example, 
guidance provided in Meyer and Gee (1999).  

(4) Obtain posterior maximum likelihood 
parameter estimates, and estimation 
covariance, for each model by inversion 
(model calibration). In many cases, available 

codes such as PEST and UCODE can be 
applied to this step.  

(5) Calculate a posterior probability for each 
model using the model calibration results and 
the prior model probabilities. 

(6) Predict quantities of interest using each 
model.  

(7) Assess prediction uncertainty (distribution, 
variance) for each model using Monte Carlo 
or stochastic moment methods. 

(8) Weight predictions and uncertainties by the 
corresponding posterior model probabilities.  

(9) Sum the results over all models. 
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Appendix A. Distribution Coefficients, Kd, and Associated Uncertainty in 
Dose Assessment Modeling for Decommissioning Analyses

A.1 Introduction 
Preliminary or screening dose assessments conducted 
as part of decommissioning analyses are typically 
conducted using generic input parameter values. Three 
examples of codes that are used for this purpose are 
DandD, RESRAD and MEPAS (Meyer and Gee, 
1999). In a recent study, a hypothetical 
decommissioning test case was used to conduct an 
uncertainty analysis for two of these codes (DandD v. 
1.0 and RESRAD v. 6.0) (Meyer and Taira, 2001). 
Uranium was used as one of the contaminants of 
interest. In this case, it was determined that the 
distribution coefficient was one of the most critical 
parameters for determining dose. 

Because the distribution coefficient is an important 
source of uncertainty in dose assessment modeling, it is 
important to have a good understanding of what 
contributes to uncertainty in the distribution coefficient 
itself. The distribution coefficient or Kd is an empirical 
model for the description of partitioning of a 
contaminant between the soil/sediment and the solution 
in contact with the soil/sediment and is defined as 
follows: 

 Kd = Cads/Caq        (A-1) 

where Cads is the concentration of the contaminant of 
interest adsorbed to the solid phase (moles/g) and Caq is 
the concentration of the contaminant in the aqueous 
phase (moles/mL). This model assumes that the 
partitioning of the contaminant between the two phases 
is in equilibrium and is linear. A significant advantage 
of the Kd model is its simplicity both for its numerical 
application in transport codes as well as the relative 
ease of its experimental measurement. For these 
reasons, the Kd model is the most widely used 
adsorption model in hydrologic transport codes for risk 
assessment calculations. This simplicity and ease of 
use also make this approach one of the most widely 
misused models for describing contaminant adsorption. 
This is particularly true for systems that have highly 
variable geochemical conditions. Some of the primary 
factors that can lead to large variation in Kd values 
include non-linear adsorption, solid/aqueous 
partitioning conditions that are controlled or influenced 
by solubility and/or redox conditions, slow reaction 
kinetics, spatial variability in the solution chemistry or 
solid phase mineralogy, temporal changes in solution 

chemistry, and heterogeneities in the physical 
properties of the aquifer materials.  

A.2 Background 

A.1.1 Contaminant Adsorption onto 
Natural Mineral Surfaces 

Adsorption, accumulation at the solid-water interface, 
is one of the primary processes controlling the 
transport of dissolved contaminants in the vadose zone 
and groundwater. Adsorption occurs as atoms, 
molecules, and ions exert forces on each other at this 
solid-water interface. Adsorption reactions are 
discussed primarily in terms of intermolecular 
interactions that occur between the solutes and solid 
phases (Stumm and Morgan 1996). These interactions 
include:  

1) Surface complexation reactions (surface 
hydrolysis and the formation of coordinative 
bonds at the surface between metal cations, 
anions, and surface binding sites).  

2) Electrostatic interactions at the surfaces, 
extending over longer distances than chemical 
forces. 

3) Hydrophobic expulsion of hydrophobic 
substances (this includes nonpolar organic 
solutes), which are usually only sparingly 
soluble in water and tend to reduce their 
contact with water and seek relatively 
nonpolar environments, thus accumulating on 
solid surfaces and becoming adsorbed on 
organic sorbents. 

4) Adsorption of surfactants (molecules that 
contain both a hydrophobic and a hydrophilic 
moiety). Interfacial tension and adsorption are 
intimately related through the Gibbs 
adsorption law. In simple terms, this law 
indicates that substances that reduce surface 
tension will tend to adsorb at interfaces. 

5) Adsorption of polymers and of 
polyelectrolytes (humic substances and 
proteins in particular). This is a rather general 
phenomenon in natural waters and soil 
systems that has far-reaching consequences 
for the interaction of particles with each other 
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and on the attachments of colloids (and 
bacteria) to surfaces. 

The process in which chemicals become associated 
with solid phases is often referred to as sorption, 
especially when one is not sure whether one is dealing 
with adsorption (onto a two-dimensional surface) or 
absorption into a three-dimensional matrix. 

In addition to the nature of the solid phase, the 
chemical properties of the solution in contact with the 
solid phase will have a substantial effect on its 
adsorption characteristics. For example, pH will have a 
major influence on the degree of surface hydrolysis, 
which in turn affects the nature and extent of surface 
charge. Ionic strength will affect the electrostatic 
nature of the surface and therefore the electrostatic 
interactions that can occur. In addition to these effects, 
the adsorption process itself will change the nature of 
the surfaces of the solid phase and will influence 
further adsorption.  

The chemical properties of the solution in contact with 
the solid phase will also affect adsorption as a result of 
interactions between dissolved species. For example, 
many metal ions form complexes with major anions in 
solution. The formation of these complex species can 
have a major influence on the charge and geometry of 
the original ion and as a result, significantly alter the 
sorptive properties of the species of interest. A special 
case of complex formation is hydrolysis. Hydrolysis is 
the formation of complexes with hydroxide ion and is a 
strong function of pH. Ionic strength can be an 
important factor that affects the activity of all dissolved 
ions, and as a result, the extent of complex formation. 
Eh can also have a large influence on adsorption by 
altering the oxidation state of the contaminant and/or 
the adsorbent. 

A.1.2 Empirical Approaches to 
Adsorption Modeling 

As indicated previously, the linear equilibrium 
adsorption isotherm or Kd model is an empirical 
approach that assumes the adsorption of a solute 
increases linearly with increasing concentration of a 
solute. As a result of the empirical nature of the Kd 
model, it cannot represent the individual contributions 
of different uptake mechanisms. In addition, the Kd 
model cannot recognize a maximum sorption limit. In 
actuality, there are a finite number of sorption sites 
and, as a result, sorption will reach a practical upper 
limit. 

Despite the shortcomings of the Kd model, it can 
provide an accurate description of adsorption under 

certain conditions. The Kd model generally works well 
for trace concentrations of un-ionized hydrophobic 
organic compounds; however, application to ionic 
inorganic contaminants is more limited. Appropriate 
use of the Kd approach for modeling adsorption of 
ionic species is generally limited to species that have 
very simple chemistry and site conditions where the 
groundwater solution chemistry and mineralogy of the 
aquifer material are quite constant and homogeneous. 
This is generally an unusual occurrence, particularly at 
contaminated waste sites. 

In addition to the linear equilibrium adsorption 
isotherm, several other more complex empirical 
adsorption models are available. The Freundlich 
isotherm (Freundlich, 1926) is a nonlinear equilibrium 
adsorption model defined by the relationship: 

 Cads = KFr(Caq)n   (A-2) 

where Cads, and Caq are defined as in Eq. (A-1) and KFr 
and n are empirical coefficients. For the special case 
where n = 1, Eqs. A-1 and A-2 are identical. A plot of 
log Cads versus log Caq should result in a straight line 
with a slope of n and an intercept of log KFr. As with 
the linear adsorption isotherm model, an adsorption 
maximum cannot be represented with the Freundlich 
isotherm. 

An empirical adsorption model that accounts for an 
upper limit to adsorption is the Langmuir isotherm 
(Langmuir, 1918). This model was developed for 
adsorption of gases onto solid surfaces and assumes 
that all sorption sites are energetically equal. The 
general form of the Langmuir isotherm (as adapted for 
adsorption from solution) is: 

 Cads = KLabCaq/(1 + KLaCaq)  (A-3) 

Where b is the maximum adsorption capacity of the 
substrate (g solute/g adsorbent), and KLa is a constant 
that represents the strength of adsorption of the solute 
onto the solid (mL/moles). Values for b can be 
determined for a given data set by plotting Caq/Cads 
versus Cads. This should yield a straight line with a 
slope of 1/b and an intercept of 1/KLab.  

A.1.3 Surface Complexation Approach to 
Adsorption Modeling 

Surface complexation models (SCMs) are chemical 
models that provide a molecular level mechanistic 
description of adsorption. Analogous to solution 
complexation, surface complexation models define 
surface species, chemical reactions, equilibrium 
constants, mass balances and charge balances that are 
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based on an equilibrium thermodynamic approach. 
Surface complexation models constitute a family of 
models that have many common characteristics and 
adjustable parameters. The models differ in the 
structural representation of the solid-solution interface 
(location of the adsorbing ions and resulting charge). 
The primary advantage of surface complexation 
models over empirical models is the ability to account 
for variable physical-chemical conditions. This is in 
stark contrast to empirical models, which generally 
ignore the chemical complexity of the sorption 
processes and aqueous complexation.  

Although surface complexation models are often 
incorporated directly into complex reactive transport 
codes, the advantages of the surface complexation 
models can be exploited using simpler hydrologic dose 
assessment codes as well. This has important 
implications because it is these simpler codes that are 
most frequently used for regulatory decision-making 
purposes. In most hydrologic dose assessment codes 
the complex geologic conceptual model is simplified to 
a relatively simple geologic conceptual representation 
(Meyer and Gee, 1999). These simplified conceptual 
models are typically composed of layers or zones of 
materials that have distinct and homogenous physical 
(hydrologic), mineralogical, and chemical properties. 
By making certain assumptions regarding the average 
or typical chemical and mineralogical characteristics 
within these different layers or zones, surface 
complexation models can be used to calculate 
individual Kd values appropriate for each layer or zone 
within the conceptual model.  

As indicated above, surface complexation models 
constitute a family of models that have many common 
characteristics and adjustable parameters. The most 
frequently used surface complexation models include 
the Diffuse Layer Model (DLM), the Constant 
Capacitance Model (CCM), the Triple Layer Model 
(TLM), and non-electrostatic SCMs. The three surface 
complexation models (DLM, CCM, and TLM) will be 
discussed briefly below and the non-electrostatic SCMs 
will be discussed in the next section. 

The DLM is the simplest of the electrostatic SCMs. In 
the DLM, protonation/deprotonation and adsorption 
occur in one plane at the surface/solution interface and 
only those ions specifically adsorbed in this inner “o-
plane” contribute to the total surface charge (σs = σo). 
Dzombak and Morel (1990) have provided a detailed 
evaluation of the DLM, including the development of a 
strong site/weak site conceptual model for the mineral 
surface. The analysis of Dzombak and Morel (1990) 
also provides parameters for its application to the 

sorption of a number of cationic and anionic species on 
ferrihydrate. 

The CCM model (Schindler et al., 1976) is 
conceptually similar to the DLM. In contrast to the 
DLM, the CCM assumes that the charged surface is 
isolated from the bulk solution by a plane with a 
constant capacitance C1 (Farads/m2), resulting in a 
linear potential gradient from the charged substrate to 
the bulk solution. The CCM approached is generally 
limited to a specific ionic strength because changes in 
ionic strength require recalculation of C1. The constant 
capacitance term is not measureable and as a result is 
typically applied as an empirical parameter and fit to 
the data. This has the advantage of providing a better 
fit to the experimental data, but at the expense of 
theoretical rigor. 

The TLM (Davis et al., 1978; Davis and Leckie, 1978; 
1980) is conceptually similar to both the DLM and the 
CCM. In the TLM; however, the charge/potential 
relationships of the mineral-water interface are divided 
into three layers. The TLM approach provides more 
flexibility to simulate ionic strength effects by 
representing sorption of background electrolytes and 
permitting the formation of both inner- and outer-
sphere complexes. As a result of its construction, the 
TLM requires additional parameters beyond those 
needed for the DLM and CCM. Additional parameters 
include equilibrium constants KCat and KAn for 
background electrolyte sorption, and capacitances C1 
and C2 associated with the areas between the o- and β-
planes and β- and d-planes, respectively. 

A.1.4 Non-Electrostatic Surface 
Complexation Models 

Although SCM is the most theoretically rigorous 
approach to modeling contaminant adsorption onto 
mineral surfaces, application to natural materials 
remains problematic. SCM adsorption data are 
generally determined using well-characterized single-
phase minerals whose surface properties, such as 
surface area, site density, and electrostatic correction 
terms, are readily measured. For most natural soils and 
sediments, measurement of the site density and 
electrostatic correction terms of the individual 
contributing minerals is impractical if not impossible. 
Natural mineral surfaces in sediments/soils are 
typically coated with poorly crystalline secondary 
mineral coatings (Penn et al. 2001, Coston et al., 1995). 
In general, these coatings make it extremely difficult to 
quantitatively assess the electrostatic contribution to 
the free energy of adsorption. 
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Davis et al. (1998, 2002) recently demonstrated two 
approaches for modeling adsorption onto natural 
heterogeneous materials. The two approaches are the 
Component Additivity approach and the Generalized 
Composite approach. The Component Additivity 
approach is based on summing the adsorption of the 
individual mineral components of the soil or sediment 
to get the total adsorption of the mixture. Because this 
modeling approach is based on summing the results 
from models already calibrated with pure mineral 
phases, the Component Additivity approach is 
predictive and does not involve fitting the adsorption 
data of the natural materials. 

In the Generalized Composite modeling approach, the 
surface of the mineral assemblage is considered too 
complex to be quantified in terms of the contributions 
of individual phases to adsorption. Instead the 
electrostatic terms are omitted and the mass action 
expressions are described in terms of “generic” surface 
function groups. The stoichiometry and formation 
constants for each reaction are evaluated based on their 
simplicity and goodness of fit to the experimental 
adsorption data (Davis et al., 2002; Davis et al., 1998). 
The generic surface sites represent average properties 
of the sediment/soil rather than specific minerals. 
Experimental data for site-specific natural materials 
must be collected over the range of chemical 
conditions that can be expected in the field. Because of 
the semi-empirical nature of this approach, the 
resulting model parameters are not likely to be 
transferable to other field sites. 

These two modeling approaches were compared for 
U(VI) adsorption by sediments from the Koongarra 
natural analog site in northwest Australia (Davis et al., 
2002, Waite et al., 2000). The Component Additivity 
approach required eight reactions and used a diffuse 
double layer electrostatic model. The Generalized 
Composite approach only needed four surface reactions 
and did not include an electrostatic model. The model 
fit to the experimental adsorption data for both 
approaches was nearly the same, even though the 
Generalized Composite model had seven model 
parameters and the Component Additivity model had 
eleven. 

A.2 Sources of Kd Value 
Uncertainty 

The uncertainty associated with any particular Kd value 
used in a risk assessment can be placed into three 
major categories: 

1) Experimental uncertainty 
2) Sorption process chemistry uncertainty 

a) variation in solution chemistry 
-  complexation  
- competitive adsorption 
- alteration of the adsorption-site chemistry 

b) variation in surface adsorption sites 
- mineralogy 
- surface coatings and fracture fillings 

3) Uncertainty resulting from scaling of Kd 
measurements determined in the laboratory to 
intact sediments/soil in the field  
c) effective surface area 

- surface sites in hydrologic contact with 
moving radionuclides 

- diffusion 

The experimental uncertainty is the sum of the errors 
resulting from measurement errors that occur during 
the Kd value measurement. This is generally the most 
easily quantifiable component of the uncertainty and 
can be determined using statistical methods. Both the 
uncertainty in the Kd value that results from variation 
in the sorption process chemistry, and the uncertainty 
resulting from the scaling of laboratory Kd values to 
intact sediments/soil in the field, could be considered to 
be conceptual model uncertainties. This is because, for 
a particular Kd value, the solution chemistry, 
sediment/soil mineralogy and surface area per unit 
weight of the laboratory sample used for the Kd value 
determination is assumed to be identical to that of the 
site (or portion of the site) that is being modeled with 
the reactive transport code. If any of these parameters 
vary significantly such that they can result in a 
significant change in the Kd value, then the conceptual 
model would have to be considered as 
unrepresentative.  

In order to quantify the uncertainty of a reactive 
transport model resulting from uncertainty in the Kd 
value, the uncertainties resulting from the sorption 
process chemistry and the uncertainty from scaling 
must be quantified. 

Quantification of the sorption process chemistry 
uncertainty can be broken down into two major parts. 
The first part is quantification of the variation in the 
solution chemistry and sediment/soil mineralogy within 
the site being modeled. This is a site characterization 
task that must be conducted with expert guidance to 
ensure that measurements of all geochemical 
parameters that could potentially influence adsorption 
of the contaminant of interest are made. In addition to 
the geochemical parameter measurements, spatial 
frequency of the sample collection is of critical 
importance for quantification of the geochemical 
parameter variation. 
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The second component of the sorption process 
chemistry uncertainty required to quantify Kd value 
uncertainty is quantification of the variation in the Kd 
value as a function of the important geochemical 
parameters. This must be conducted in the laboratory 
over the range of values for each important 
geochemical parameter that occurs within the site of 
interest. 

The uncertainties that result from scaling issues are 
largely the result of differences in the amount of 
adsorption sites that are in hydrologic contact with the 
mobile aqueous phase within the field site, versus that 
which are accessible to the aqueous phase in the 
laboratory Kd value determinations. Because the 
adsorbed phase concentration (Cads in Eq. A-1) of the 
Kd is given in terms of unit mass, as opposed to unit 
surface area, any difference between the surface area 
per unit weight of soil/sediment that occurs in-situ 
versus that in the laboratory system will result in error. 

A.3 Variability in Kd Values and the 
Impact on Transport 
Calculations 

As indicated earlier Kd values are empirical constants 
and as a result can be applied with confidence only to 
conditions that are the same as those under which the 
value was measured. If the sediment/soil mineralogy or 
physical properties, solution chemistry, or contaminant 
loading of the system to be modeled are significantly 
different than that for which the Kd value was 
determined, significant error in the estimated transport 
rates could result. This is because many factors can 
affect the degree to which a particular contaminant 
adsorbs to a particular sediment or soil (as discussed 
above). These factors include: sediment mineralogy 
and surface area, major ion concentration in solution 
(complexation and competitive adsorption), pH of the 
solution, and the concentration of the adsorbent in 
solution and on the adsorbate. Careful application of 
expert geochemical knowledge can often significantly 
reduce the number of significant variables that must be 
considered for evaluating Kd values. For example, some 
radionuclides may have a low tendency to form 
complexes with other major ions in solution or do not 
interact significantly with certain mineral surfaces. 

In the hypothetical test case conducted by Meyer and 
Taira (2001), a Kd value of 15 was used for uranium. 
This value is a geometric mean value for loam taken 
from the compilation by Sheppard and Thibault (1990). 
A major problem with using mean Kd values from this 
and similar literature compilations of Kd values for 
conducting screening calculations is the inherently 

large variation in the Kd values. For example, Sheppard 
and Thibault (1990) report a range in Kd values for 
uranium of 0.03 to 2200 ml/gm. The reason for this 
large degree of variability in Kd values is due largely to 
differences in solution chemistry and soil properties 
used in the various Kd value determinations included in 
the compilation. Because no control is placed on these 
variables during the statistical analysis of the Kd values, 
the individual impact of these variables is ignored, 
resulting in the large overall variation observed.  

To better illustrate the impact of these values on the 
calculated mobility of uranium, these Kd values will be 
converted to retardation factors. The retardation factor 
is a measure of the ratio of the average linear velocity 
of water divided by the average linear velocity of the 
contaminant. The retardation factor can be calculated 
using the following equation: 

 Rf = 1 + (Kd ρb)/θ (A-4) 

where, the retardation factor is Rf (unitless), ρb (kg/m3) 
is the bulk density, and θ (m3/m3) is the volumetric 
water content. By assuming a bulk density of 1.86 
kg/m3 and a volumetric water content of 0.30 m3/m3, 
equation 1 can be simplified to: 

 Rf = 1 + 6.2Kd  (A-5) 

Using the range of Kd values for uranium reported by 
Sheppard and Thibault (1990), the range in retardation 
factors is calculated to be 1.2 to 14,000. This range in 
retardation factors illustrates that, for the reported 
range of Kd values, uranium has the potential to vary 
from being essentially unretarded (Rf = 1 indicates the 
contaminant moves with the water or no adsorption 
occurs) to being essentially immobile (strongly 
adsorbed), depending upon the conditions encountered. 

There are several factors that account for this large 
variation in adsorption potential. These factors include 
the highly variable adsorption potential of different 
minerals for uranium, and the strong influence of pH 
and carbonate concentration of uranium adsorption. For 
example, Turner et al. (2002) illustrate uranium Kd data 
for silica, montmorillonite, and clinoptilolite as a 
function of pH (in equilibrium with atmospheric CO2). 
From this data, it can be seen that for silica at pH 8 the 
typical Kd value is 5 ml/gm. As the pH decreases to 
between 6.5 and 6.0, the Kd for silica peaks at 50. As 
the pH decreases further to pH 4 the Kd decreases to 
about 0.3. In contrast, Kd values for montmorillonite 
are much higher. At pH 8 the Kd is approximately 300. 
As the pH decreases to between 6.5 and 6.0 the Kd for 
montmorillonite peaks at 10,000. As the pH decreases 
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further to pH 4 the Kd decreases to about 300. These 
relationships are illustrated in Figure A-1. 

It is clear from these illustrations that the variability in 
Kd values as a result of large heterogeneities in site-
specific mineralogy and solution chemistry could result 
in highly variable adsorption behavior that could 
potentially result in significant error when compared to 
modeling results determined with a single generic Kd 
value. 

The magnitude of variation illustrated for uranium Kd 
values could also be expected for other radionuclides 
commonly encountered at NRC decommissioning sites. 
Specific examples are C-14 and possibly Tc-99 and Sr-
90. Most of the other radionuclides commonly 
encountered at NRC decommissioning sites (Cs-137, 
Co-60, Ni-63, Am-241, Pu-238,-239,-241, Eu-152, Nb-
94, and Cm-243) are strongly adsorbing under typical 
conditions and even large variability in their Kd values 
is not likely to result in large differences in dose 
uncertainty. H-3 is not adsorbing with a Kd value of 
zero with little uncertainty. This suggests that the 
greatest degree of uncertainty in dose models results 
from uncertainty of Kd values for a limited number of 
radionuclides. 

A.4 Determination of Kd Values and 
Associated Uncertainly 

Experimental determination of site-specific Kd values 
is likely to remain the most common method for 

characterizing adsorption in risk assessment models at 
most sites in the near term. Geochemical reasoning and 
thermodynamic modeling can provide valuable 
guidance and support for the experimental 
determination of Kd values and how they vary with 
solution chemistry and mineralogy. In some cases, 
surface complexation models can be used to estimate 
Kd values as a function of solution chemistry and 
mineralogy. This approach has been demonstrated by a 
number of researchers to support performance 
assessments at major radioactive waste disposal sites 
that have significant resources to devote to such efforts 
(Davis et al., 2002; Turner et al., 2002). This approach 
is currently gaining acceptance as the best compromise 
between comprehensive scientific defensibility and 
practical application. It is expected that this approach 
for determining input sorption parameters for more 
routine risk and performance assessment modeling 
efforts will become increasingly utilized as the 
database of thermodynamic sorption models increases. 
This approach typically requires a significant amount 
of site-specific geochemical characterization. 

A.4.1 Systematic Approach for 
Determination of Kd Values and 
Associated Uncertainty 

A systematic approach for determining Kd values and 
associated uncertainty for use in dose assessment 
modeling at specific sites is outlined below in general 
terms. The first step in this approach is to collect all 
site-specific characterization data that is available that 
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Figure A-1. Variability in uranium Kd as a function of mineral and pH. Based on data from 
Turner et al. (2002) 
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may be useful for estimating adsorption of the 
contaminants of interest. This could include aqueous 
phase chemical data (contaminant concentrations, 
major ion data, Eh, and pH), aquifer material 
mineralogy, mineral surface coatings, stratigraphy, and 
spatial and temporal variability of these geochemical 
parameters. This information can be used to guide the 
selection of Kd values from generic compilations of Kd 
values or from other adsorption data available in the 
literature that could be used to calculate Kd values 
(such as surface complexation model data). If the 
uncertainty of the Kd value estimates determined in this 
process is acceptable, no further Kd value refinement is 
necessary. If the uncertainty of the Kd value estimates 
determined in this process is too high or if the available 
characterization data and/or available adsorption data 
for the contaminants of concern is not adequate, then a 
more detailed geochemical analysis must be conducted. 
As part of the geochemical analysis, site-specific 
characterization needs would be determined and the 
requirements and scope of an adsorption study to 
develop site-specific Kd values as a function of 
important geochemical parameters would be outlined. 
The site-specific characterization work may involve an 
iterative process where early characterization results 
can be used to determine and guide further 
characterization needs. 

A.4.2 Determination of Uranium Kd 
Values and Associated Uncertainty 
with Iterative Refinement to 
Maximize Cost Effectiveness 

A brief outline will be provided here to illustrate how 
this methodology can be applied to a specific 
contaminant. In this case, uranium has been selected 
for illustrative purposes because it is a major 
contaminant of concern for a number of 
decommissioning sites and uranium has complex 
adsorptive behavior that ranges from non-adsorbing to 
highly adsorbing, depending on geochemical 
conditions. 

The first step to estimating a site-specific Kd value is to 
compile any available site characterization data that 
would be useful from a geochemical perspective. This 
would include solution chemistry data (major cation 
and anion concentrations, alkalinity measurements, pH, 
Eh and contaminant concentrations), and mineralogy 
(texture, major mineral components, clay mineralogy 
and hydrous metal oxide content). The geochemistry of 
the contaminant of interest will determine which 
geochemical parameters are most critical for 
determination of the Kd value. In the case of uranium, 
the carbonate concentration has a very large effect on 

the adsorption of uranium due to strong complex 
formation with carbonate. For example, Kd values for 
uranium (VI) adsorption on ferrihydrite at pH 8 have 
been shown to decrease by four orders of magnitude as 
the partial pressure of carbon dioxide gas, pCO2, 
increases from its value in air (0.032%) to 1% (Davis et 
al., 2002). This is an important variation to understand, 
because pCO2 in aquifers commonly reaches values of 
1-5%, while most laboratory determined Kd values 
have been determined in equilibrium with air. The 
carbonate concentration (or pCO2) can be determined 
from measurements of pH and alkalinity. So in general, 
the two most important solution parameters to know 
for estimating Kd values are pH and alkalinity. Other 
major ions are of secondary importance, but can 
influence the speciation of the carbonate system.  

After the solution parameters, pH and alkalinity, the 
next most important geochemical parameter to know 
for uranium Kd estimation is the mineralogy. The 
mineralogical information can range from very general 
descriptions (sand, silt, clay, calcarious, etc.), to very 
specific such as a complete quantitative mineralogical 
characterization. This would include the percentages of 
the major minerals present, clay mineralogy and 
hydrous metal oxide content. In between these two 
extremes, one could obtain a semi-quantitative XRD 
scan that would provide characterization of the major 
crystalline minerals present. 

Once the characterization data have been assembled, 
this information would be used to find Kd values in the 
literature or from Kd compilations that best match site 
conditions. Alternatively, adsorption data determined 
for pure minerals could be used to calculate Kd values. 
This could involve the use of surface complexation 
models and geochemical equilibrium codes combined 
with adsorption site densities estimated from site 
characterization data to estimate Kd values for specific 
geochemical conditions. 

Depending on the nature of the site and the adsorption 
data available in the literature, it may be determined 
that some limited additional characterization data may 
significantly reduce the uncertainty of the current Kd 
estimates. For example, if uranium adsorption data are 
available in the literature for ferrihydrite and 
montmorillonite at various pH values and carbonate 
(pCO2) concentrations and it is determined that these 
two minerals are significant components of the aquifer 
material and are likely to be controlling uranium 
adsorption, it may then be worthwhile to conduct 
quantitative measurements of these components on 
available samples from the site. An additional step that 
could be taken to narrow Kd value uncertainty even 
further, would be to conduct an adsorption study using 
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site aquifer material over a range of parameters 
appropriate to site conditions. This iterative approach 
to narrowing the uncertainty of the Kd value may be a 
sensible approach for addressing dose assessment 
modeling at sites that initially have little 
characterization data available. It will also provide a 
means to balance the contrasting needs of reducing Kd 
value uncertainty and producing a cost effective 
performance assessment. 

The methodology outlined above for determining a Kd 
value for uranium can also be used to determine the 
spatial and temporal variation in the Kd value; however, 
the spatial and temporal variation in the indicated 
critical parameters must be known or estimated. In the 
case of pCO2, values can increase in groundwater 
recharge as a result of transport through organic rich 
horizons where significant decomposition is occurring. 
This can lead to significant spatial and temporal 
variation in pCO2 and therefore uranium retardation. 

Significant complications that have not been addressed 
in this discussion are the fact that Kd values are 
generally given in units based on adsorption per unit 
mass. Because adsorption is actually related to the site 
density of the adsorbent, significant differences in 
surface area per unit mass of the material used in the 
adsorption measurements the site material can result in 
error. For example, Turner et al. (2002) have shown 
that uranium adsorption onto montmorillonite, 
clinoptilolite, α-alumina, and quartz have similar Kd 
values on a specific surface area basis (mL/m2); 
however, for Kd values on a mass basis (mL/g), the 
difference between Kd values for montmorillonite and 
quartz is about three orders of magnitude at near 
neutral pH values. 
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